Reference materials for physical properties 2008/2009

List of LGC Standards offices

France

LGC Standards 6, Rue Kastler B.P. 83076 67123 Molsheim France

Tel: +33 (0)3 88 04 82 82 Fax: +33 (0)3 88 04 82 90 Email: fr@lgcstandards.com

Countries served

- Algeria
- Belgium
- France
- Ivory Coast
- Jordan
- Lebanon
- Libya
- Madagascar
- Morocco
- Senegal
- Syria
- Tanzania
- Tunisia

Germany

LGC Standards GmbH Mercatorstrasse 51 46485 Wesel Germany

Tel: +49 (0)281 9887 0 Fax: +49 (0)281 9887 199 Email: de@lgcstandards.com

Your LGC Standards account number

Your contact at LGC Standards is

Countries served

- Austria

- China (Hong Kong,

- Singapore)
- Croatia
- Cyprus
- Egypt - Germa
- Germany
- GreeceHungary
- Iran
- 11411
- Israel

Name:-

Tel:

Fax:

Email: -

- Japan - Korea
- Korea
- Netherlands
- Romania
- Slovenia
- Switzerland
- Thailand
- Turkey

India

LGC Promochem P.O. Box 8061 No.142, 3rd Floor, 5th Cross Rajmahal Vilas Extension Bangalore 560 080 India

Tel: +91 (0)80 2361 1256 Fax: +91 (0)80 2361 3859

Email:in@lgcpromochem.com

Countries served

- Bangladesh
- India
- Malaysia
- Nepal
- Pakistan

Italy

LGC Standards s.r.l. Via Venezia, 23 20099 Sesto San Giovanni Milan Italy

Tel: +39 02 2412 6830 Fax: +39 02 2412 6831 Email:it@lgcstandards.com

Countries served

Poland

LGC Standards ul. M. Konopnickiej 1 Dziekanów Lesny 05-092 Lomianki Poland

Tel: +48 (0)22 751 31 40 Fax: +48 (0)22 751 58 45 Email:pl@lgcstandards.com

Countries served

- Belorussia
- Bulgaria
- Czech Republic
- Lithuania
- Poland
- Russia
- Slovakia
- Ukraine

Spain

LGC Standards C/Salvador Espriu 59, 2° planta 08005 Barcelona Spain Tel: +34 93 308 4181

Fax: +34 93 307 3612 Email:es@lgcstandards.com

Countries served

- Andorra
- PortugalSpain
- Spain
- Latin America

Sweden

LGC Standards Box 1737 SE-501 17 Borås Sweden

Tel: +46 (0)33 20 90 60 Fax: +46 (0)33 20 90 79 Email:se@lgcstandards.com

Countries served

- Denmark
- Estonia
- Finland
- Iceland
- Latvia
- Norway
- Sweden

United Kingdom

(Head office)

LGC Standards Queens Road Teddington Middlesex TW11 0LY United Kingdom

Tel: +44 (0)20 8943 8480 Fax: +44 (0)20 8943 7554 Email: uksales@lgcstandards.com

Countries served

- Australia
- Austral - Brunei
- Brune
- Canada
- Channel Islands

- New Zealand

Philippines

- Saudi Arabia

South Africa

- United Kingdom

United Arab Emirates

www.lgcstandards.com

For countries not listed above, please contact our head office.

- Ireland
- Kenya
- Kuwait
 Malta

-

-

Content

Introduction		
	About the catalogue	2
	About LGC Standards	2
	Producers of reference materials	3
	The use of reference materials	3
	About proficiency testing (PT)	4
	Relevant literature	5
	Relevant training courses	5
Glowell [™] St	tandards	6
Thermal properties		6
Particles and	d surface properties	15
Optical prop	erties	27
lon activity		38
Electrical pro	operties	42
Viscosity		43
Polymeric p	roperties	47
Miscellaneo	us	49

Introduction

About the catalogue

For manufacturers of a wide variety of products, the determination of the physical properties of their product can be one of the most important steps in assuring quality. LGC Standards is pleased to present the catalogue "Reference materials for physical properties". This is the third catalogue from LGC Standards featuring a comprehensive collection of reference materials intended purely for the determination of physical properties.

The catalogue lists a large range of reference materials and standards covering many physical properties including thermal, surface properties, particle shape and size, ion activity, viscosity, electrical, and polymeric properties. Of particular interest are products for the determination of optical properties such as molecular absorption, luminescence, colour measurement and refractive index. Also featured are the old favourites such as melting point standards and standards for use with differential scanning calorimetry (DSC).

The range includes reference materials and standards from commercial sources as well as national and international bodies and each product is accompanied by a certificate of analysis. The catalogue has been designed to be simple to use; it provides a brief description of the products with details of the relevant parameters from the certificate of analysis.

About LGC Standards

LGC Standards is Europe's most comprehensive source of reference materials. We work closely with the leading manufacturers to offer laboratories worldwide improved access to reference materials, all designed to cover an increasingly large range of parameters.

Our network of offices in Europe and India combined with our extensive experience in selling reference materials and our technical expertise, allow LGC Standards to work in partnership with our customers to provide fast delivery together with good technical advice as well as dealing with complex import and export regulations.

LGC Standards is part of LGC, whose Research and Technology Division acts as the designated UK National Measurement Institute (NMI) for Chemical and Biochemical measurement, and has a long history in the development and validation of analytical methods and the production of reference materials.

Many of the analytical methods, which cover the food, environment, industrial, clinical and pharmaceutical sectors, are accredited to ISO/IEC 17025 (Requirements for the competency of testing and calibration laboratories). Full details of the accreditation schedule can be found on the UKAS website www.ukas.com.

LGC's Research and Technology Division is accredited to ISO Guide 34 (General Requirements for the competence of reference materials producers) for the production of reference materials. The measurement capabilities used to produce certified reference materials in its capacity as the UK NMI are verified through participation on key comparison studies organised by the Consultative Committee for the Amount of Substance (CCQM) of the International Weights and Measures Organisation (BIPM). The certificates are recognised by other National Measurement Institutes, under the Mutual Recognition Arrangement.

In its role as the NMI, LGC serves on the International Organisation for Standardisation (ISO) Committee for Reference Materials (REMCO), which aims to carry out and encourage a broad international effort for the harmonization, production and application of certified reference materials (CRMs).

LGC has a long history in the development and validation of analytical methods and the reference materials production facility at LGC complements this expertise. LGC offers a range of chemical and bio-analytical laboratory services across a variety of industries including: food and agriculture, environment, life sciences, chemicals and forensic science. LGC also plays a pivotal role in a number of programmes with both government and industry to improve analytical standards and laboratory performance.

Producers of reference materials

IRMM

BCR[®] and IRMM reference materials (BCR[®] is a registered trademark of JRC-EC-IRMM) are the products of both research funding and direct action programmes of the European Commission, in which new or improved measurement or testing methods are developed. These programmes are aimed at improving, harmonising or standardising measurements and testing in the European Union.

As an authorised distributor of BCR[®] reference materials LGC Standards currently holds stock of more than 5000 units of certified BCR[®] and IRMM reference materials under carefully controlled and monitored conditions.

European Reference Materials (ERM®)

The ERM[®] range of reference materials was launched in May 2004. It is the result of collaboration between three major reference material producers, LGC in the UK, the Institute for Reference Materials and Measurement (IRMM) in Belgium and Bundesanstalt für Materialforschung und Prüfung (BAM) in Germany. The partners are committed to using the most advanced principles for the production of certified reference materials. The certified values have clearly defined and stated traceability and are internationally recognized through participation of the partners in key comparisons organized by the Bureau International des Poids et Mesures (BIPM). All ERM[®] materials are subject to rigorous homogeneity and stability testing guaranteeing the certified values for every unit over its complete shelf life.

The National Institute of Standards and Technology (NIST)

NIST produces standard reference materials (SRMs[®]). Based in the United States, NIST has provided reference materials to industry and commerce for nearly 100 years. NIST collaborates with companies to provide academia and industry with SRMs for expanding areas such as air and water pollution, which are international issues.

Others

Materials from the following organisations are also included in this catalogue:

- National Research Centre for Certified Reference Materials, China
- AEA Technology, UK
- Whitehouse Scientific Ltd, UK
- Optiglass Ltd, UK
- Cargille Laboratories Inc., USA
- H & D Fitzgerald Ltd, UK
- GE Sensing, UK
- Poulten Selfe & Lee Ltd, UK
- Stanhope-Seta, UK
- Federal Institute for Materials Research and Testing, Germany
- LabStand Production & Service Company, Poland
- Central Office of Measures (GUM), Poland

The use of reference materials

Reference materials are instrumental in ensuring the reliability of analytical measurements and so avoiding the use of poor quality data as the basis of decision making.

When choosing a matrix reference material for a particular application the analyst should consider the following factors before selecting a material:

- Matrix match and potential interferences
- Analytes
- Measurement range
- Measurement uncertainties
- Certification procedures used by the producer
- Documentation supplied with the material (e.g. certificate or report).

About proficiency testing (PT)

Proficiency testing (PT) is a powerful quality assurance tool for laboratories undertaking analytical measurements. A PT scheme provider distributes test materials on a regular basis to participating laboratories for independent testing. The results are returned to the organiser of the scheme who makes an analysis of the results and provides a report to all the participants.

There are a number of benefits of taking part in a PT scheme:

- Provides laboratories with a mechanism to compare their measurements with others
- Enables laboratories to demonstrate the quality of their results to third parties e.g. customers, regulators and accreditation bodies
- Facilitates the monitoring of trends, over time, in the quality of measurements
- Assists the evaluation of methods and instrumentation
- Helps and educates laboratory staff and their customers

The LGC Proficiency Testing Group (incorporating Quality Management Ltd and Aquacheck Ltd) is a major international provider of proficiency testing services. It has over twenty years experience in all aspects associated with the provision of proficiency testing services to laboratories undertaking chemical and microbiological analysis. Schemes of relevance to a wide range of sectors are available and most of them are run on an international basis. All LGC schemes are accredited by the United Kingdom Accreditation Service (UKAS).

Current schemes provided include:

Environmental:

- \cdot AQUACHECK chemical analysis of clean waters, waste waters, sludges, sediments and soils
- \cdot QWAS microbiological assessment of waters, effluents and sludges
- · CONTEST analysis of contaminated soils for a wide range of contaminants

Food:

- \cdot QMS microbiological examination of food and food ingredients
- \cdot QDCS composition and safety testing in the dairy sector
- \cdot QMAS chemical analysis of meat
- · QGS analysis of gelatine samples
- \cdot QCS microbiological testing of chocolate
- · QFCS chemical testing of food products

Beverage:

- \cdot BAPS chemical, microbiological and sensory analysis of a range of beers.
- · DAPS analysis of a wide range of alcoholic beverages (except beer)
- · QBS microbiological and chemical testing of soft drinks
- \cdot SODAS chemical analysis of carbonated and still soft drinks
- · MAPS analysis of malt and barley used by the malting, brewing and distilling industries
- · SUPS analysis of raw sugar used in soft drink production.

Others:

- · QMIS identification of micro organisms
- · PHARMASSURE measurement of a range of analytes in pharmaceutical products used in hospitals
- \cdot QUARTZ toxicological analysis of drugs in post-mortem blood
- TOYTEST toy safety testing to the European Standard EN71 and American Standard ASTM F963

In addition to these regular schemes LGC is also able to offer customised or closed proficiency testing schemes tailored to a specific organisation's requirements.

LGC schemes are now available either through LGC Standards or through your local distributor. Please contact your local LGC Standards office to find out more.

Relevant literature

Applications of Reference Materials in Analytical Chemistry VAM V. Barwick, S. Burke, R. Lawn, P. Roper and R. Walker RSC

Reference Materials in Analytical Chemistry – A Guide for Selection and Use A. Zchunke published by Springer-Verlag.

Reference Materials for Chemical Analysis – Certification, Availability and Proper Usage M. Stoeppler, W.R. Wolf, P.J. Jenks published by Wiley-VCH.

Proficiency Testing in Analytical Chemistry, R.Lawn, M.Thompson and R.Walker published by The Royal Society of Chemistry.

Relevant training courses

A range of training courses is available from LGC to help laboratory managers and analysts demonstrate competence in, and keep abreast of, quality assurance issues and practices. LGC's analytical quality training programme includes:

- Achieving traceability in chemical testing
- Using proficiency testing in the analytical laboratory
- Method validation
- Principles and practice of measurement uncertainty in chemical testing laboratories
- Quality systems in testing laboratories
- Statistics for analytical chemists
- Further statistical tools for analytical chemists
- Evaluating measurement uncertainty for chemical testing laboratories

The majority of the courses are run in Teddington, South West London, UK. In addition, LGC can provide training for groups of staff at your own site, where the courses can be customised to meet your exact needs. For further information, please contact:

Lorraine Didinal LGC Training Centre Queens Road Teddington, Middlesex TW11 0LY, UK Tel: +44 (0)20 8943 7631 Fax: +44 (0)20 8943 7314 Email: training@lgc.co.uk Web: www.lgc.co.uk

Glowell[™] standards

The measurement of light output from luminescence and fluorescence experiments is amongst the most common methods used in bio-analytical applications. The GlowellTM range of light output standards provide a known and traceable light source for the calibration of luminometers, bioimaging systems and quantitative PCR instruments. The standards are available in a variety of different wavelengths and formats to suit many different applications.

GlowellTM standards generate a constant light output over a range of different wavelengths and intensities using a gaseous tritium source. A GlowellTM device is particularly useful in experimental applications that require the comparison of light output data from different experiments or instruments. Each GlowellTM unit can be placed in a single microplate well and can therefore be included in the same plate as the samples being analysed. Each GlowellTM product is provided with a certificate of analysis and is guaranteed to produce a stable light output for a period of year.

The GlowellTM Low Light Imaging standards can be used for the calibration of CCD or low light cameras and the validation of experimental data using this equipment.

Code	Product	Unit
LUX-GLO-001	Glowell 96 Well Microplate Standard (Green Light)	KIT
LUX-GLO-002	Glowell 96 Well Microplate Standard (Blue Light)	KIT
LUX-GLO-003	Glowell 96 Well Microplate Standard (Red Light)	KIT
LUX-GLO-004	Glowell 96 Well Microplate Standard (Yellow Light)	KIT
LUX-GLO-010	Glowell 384 Well Microplate Standard (Green Light)	KIT
LUX-GLO-011	Glowell 384 Well Microplate Standard (Blue Light)	KIT
LUX-GLO-012	Glowell 384 Well Microplate Standard (Red Light)	KIT
LUX-GLO-013	Glowell 384 Well Microplate Standard (Yellow Light)	KIT
LUX-GLO-014	Glowell Low Light Imaging Standard (Green Light)	Unit
LUX-GLO-015	Glowell Low Light Imaging Standard (Blue Light)	Unit
LUX-GLO-016	Glowell 96 Well Microplate Standard (2 colour, combination)	KIT

Thermal properties

Enthalpy and heat capacity

Code	Product	Unit
LGC2601	Indium - DSC calibration standard	500 mg
	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	
	Certified values	
	Enthalpy of fusion	
LGC2603	Naphthalene - DSC calibration standard	500 mg
	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	
	Certified values	
	Enthalpy of fusion	
LGC2604	Benzil - DSC calibration standard	500 mg
	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	
	Certified values	
	Enthalpy of fusion	
LGC2605	Acetanilide - DSC calibration standard	500 mg
	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	
	Certified values	
	Enthalpy of fusion114.34 °C	
LGC2606	Benzoic acid - DSC calibration standard	500 mg
	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	-
	Certified values	
	Enthalpy of fusion122.35 °C	
LGC2607	Diphenylacetic acid - DSC calibration standard	500 mg
	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	
	Certified values	
	Enthalpy of fusion	

	Product	Uni
LGC2608	Lead - DSC calibration standard This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	500 mg
	Certified values Enthalpy of fusion	
LGC2609	Tin - DSC calibration standard This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	500 mg
	Certified values Enthalpy of fusion	
LGC2610	Enthalpy of fusion	500 mg
2002010	This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments. Certified Values	500 mg
	Enthalpy of fusion	
LGC2611	Zinc - DSC calibration standard This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	500 mg
	Certified values Enthalpy of fusion	
LGC2612	Aluminium - DSC calibration standard This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments.	500 mg
	Certified values Enthalpy of fusion	
LGC2613		500 mg
1962013	Phenyl salicylate - DSC calibration standard This certified reference material is intended for use in the calibration of differential scanning calorimeters and similar instruments. Certified values	500 mg
LGC2013	Enthalpy of fusion	6 x 500 mg
	A series of mixtures of benzil in biphenyl intended for evaluating various features of the DSC technique (e.g. bias, repeatability, applicable impurity range) when the technique is used for determining the impurity content of organic compounds Certified values Total impurity (mole %) Uncertainty (mole %) Total impurity (mole %) Uncertainty (mole %) 0.1	
	1.1	
NIST-2232		1 ç
	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard 0.2 0.2 Certified values 28.51 J/g Melting temperature 156.5985 °C 0.2	
	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard Certified values 0.2	1 ç 2 ç
	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard 0.2 0.2 Certified values 28.51 J/g Melting temperature Enthalpy of fusion 28.51 J/g Melting temperature Gallium - DSC calibration standard 156.5985 °C	
NIST-2234	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard 0.2 0.2 Certified values Enthalpy of fusion	
NIST-2234 NIST-2235	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard 0.2 0.2 Certified values 0.2 0.2 Enthalpy of fusion 28.51 J/g Melting temperature 156.5985 °C Gallium - DSC calibration standard Certified values 156.5985 °C Enthalpy of fusion 80.097 kJ/g Fusion temperature 302.9146 K Bismuth - DSC calibration standard Certified values 302.9146 K Enthalpy of fusion 53.146 J/g Fusion temperature 544.556 K	2 ç 1.5 ç
NIST-2234 NIST-2235	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard 0.2 0.2 Certified values Enthalpy of fusion	2 ç
NIST-2234 NIST-2235 NIST-2225	1.1 0.2 2.6 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard 0.2 0.2 DSC calibration standard 0.2 0.2 Certified values 0.2 0.2 Enthalpy of fusion 28.51 J/g Melting temperature 156.5985 °C Gallium - DSC calibration standard Certified values 156.5985 °C Enthalpy of fusion 80.097 kJ/g Fusion temperature 302.9146 K Bismuth - DSC calibration standard Certified values 302.9146 K Enthalpy of fusion 53.146 J/g Fusion temperature 544.556 K Mercury - DSC calibration standard Certified values 544.556 K	2 ç 1.5 ç
NIST-2234 NIST-2235 NIST-2225	1.1 0.2 2.6 0.2 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard DSC calibration standard 0.2 DSC calibration standard Certified values 156.5985 °C Gallium - DSC calibration standard Certified values 156.5985 °C Gallium - DSC calibration standard Certified values 156.5985 °C Gallium - DSC calibration standard Certified values 302.9146 K Bismuth - DSC calibration standard Certified values 302.9146 K Bismuth - DSC calibration standard Certified values 53.146 J/g Enthalpy of fusion	2 c 1.5 c 2.5 c
NIST-2232 NIST-2234 NIST-2235 NIST-2225 NIST-705A	1.1 0.2 2.6 0.2 0.2 1.6 0.2 3.1 0.2 Indium - DSC calibration standard DSC calibration standard 0.2 DSC calibration standard Certified values 156.5985 °C Gallium - DSC calibration standard Certified values 156.5985 °C Gallium - DSC calibration standard Certified values 302.9146 K Bismuth - DSC calibration standard Certified values 302.9146 K Bismuth - DSC calibration standard Certified values 53.146 J/g Fusion temperature 544.556 K Mercury - DSC calibration standard Certified values Enthalpy of fusion 53.146 J/g Fusion temperature .24.30 K Polystyrene - Heat capacity and molecular weight Melting temperature .234.30 K Polystyrene - Heat capacity and molecular weight Molecular weight (MW) values, measured using various techniques, and limiting viscosity (LV) numbers. Certified values Ma by membrane osmometry 170,900 g/mol LV in benzene (25 °C) 74.3 mL/g May by sedimentation equilibrium 189,800 g/mol LV in cyclohexane (25 °C) .35.4 mL/g	2 c 1.5 c 2.5 c

Thermal analysis purity set	set (4)
Set of 4 x 0.5 g A set of materials containing pure phenacetin and phenacetin doped with nominal 0.7, 2 and 5 mol percent of p- aminobezoic acid	
zing and triple points	
Phenyl salicylate - Melting point	500 mg
This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes. Certified values	
Thermodynamic melting point	
Dynamic melting points (0.2 °C/min heating rate):	
Onset of melting41.55 °C Meniscus point41.70 °C Liquefaction point41.85 °C	
4-Nitrotoluene - Melting point	2 x 250 mg
This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes.	
Meniscus point	
Naphthalene - Melting point	500 mg
This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes.	
Meniscus point80.37 °C Liquefaction point80.71 °C	
Benzil - Melting point	500 mg
This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes.	
Onset of melting	
Meniscus point	
Acetanilide - Melting point	500 mg
melting points of samples in glass tubes.	
Thermodynamic melting point 113.94 °C	
Dynamic melting points (0.2 °C/min heating rate):	
Onset of melting 113.46 °C	
Meniscus point113.88 °C Liquefaction point114.27 °C	
Benzoic acid - Melting point	2 x 0.25 g
melting points of samples in glass tubes.	
Meniscus point	
Diphenylacetic acid - Melting point	500 mg
This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes.	
Certified values	
Thermodynamic melting point	
Dynamic melting points (0.2 °C/min heating rate):	
Onset of melting 147.12 °C	
Meniscus point	
	Phenyl salicylate - Melting point This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes. Certified values Thermodynamic melting point

Code LGC2407	Product Anisic acid - Melting point This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes. Certified values Thermodynamic melting point	Unit 500 mg
LGC2408	Liquefaction point	500 mg
	Certified values Thermodynamic melting point	
LGC2409	Carbazole - Melting point This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes. Certified values Thermodynamic melting point	500 mg
LGC2410	Anthraquinone - Melting point This certified reference material is intended for use in checking and calibrating apparatus used for determining melting points of samples in glass tubes. Certified values Thermodynamic melting point	500 mg
NCS AS93109	Azobenzol - Melting point Certified melting point	2 g
NCS AS93102B	Napthalene - Melting point Certified melting point 80.08 °C	2 g
NCS AS93110	Methylprotocatechuic - Melting point Certified melting point	2 g
NCS AS93111	Acetanil - Melting point Certified melting point	2 g
NCS AS93103B	Benzoic acid - Melting point Certified melting point	2 g
NCS AS93112	p-Acetophenetidine - Melting point Certified melting point	2 g
NCS AS93104B	1,6-Adipic acid - Melting point Certified melting point	2 g
NCS AS93113	Albexan - Melting point Certified melting point	2 g
NCS AS93105A	Anisic acid - Melting point Certified melting point	2 g
NCS AS93114	Amber acid - Melting point Certified melting point	2 g
NCS AS93115	Sulfadimidine - Melting point Certified melting point	2 g
NCS AS93116	Cyanoguanidine - Melting point Certified melting point	2 g
NCS AS93106	Anthracene - Melting point Certified melting point	2 g

Code	Product	Unit
NCS AS93117	Saccharin - Melting point Certified melting point	2 g
NCS AS93118	Coffeine - Melting point Certified melting point	2 g
NCS AS93107B	p-Nitrobenzoic acid - Melting point Certified melting point	2 g
NCS AS93101B	4-Nitrotoluene - Melting point Certified melting point	2 g
NCS AS93119	Chocolax - Melting point Certified melting point	2 g
NCS AS93108B	Anthraquinone - Melting point Certified melting point	2 g
NIST-741A	Tin - Freezing point For use in defining fixed points of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	200 g
NIST-743	Mercury - Triple point For use in defining fixed points of the International Temperature Scale of 1990 (ITS-90). Certified triple point	680 g
NIST-1744	Aluminium - Freezing point For use in defining fixed points of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	200 g
NIST-1745	Indium - Freezing point For use in defining fixed points of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	200 g
NIST-1746	Silver - Freezing point For use in defining fixed points of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	300 g
NIST-1747	Tin - Freezing point A fixed point device for use in the realisation of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	1 cell
NIST-1748	Zinc - Freezing point A fixed point device for use in the realisation of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	1 cell
NIST-740A	Zinc - Freezing point For use in defining fixed points of the International Temperature Scale of 1990 (ITS-90). Certified freezing point	200 g
NIST-45D	Copper - Freezing point Moderate purity material for use in preparing reference point devices and for calibrating thermometers, thermocouples and other temperature measuring devices. Certified freezing point	450 g
NIST-49E	Lead - Freezing point Moderate purity material for use in preparing reference point devices and for calibrating thermometers, thermocouples and other temperature measuring devices. Certified freezing point	600 g
NIST-742	Alumina - Melting point Moderate purity material for use in preparing reference point devices and for calibrating thermometers, thermocouples and other temperature measuring devices. Certified melting point	10 g
NIST-1968	Gallium - Melting point/triple point A fixed-point device for use in the realisation of internationally accepted secondary reference points and/or triple points. They are not intended for calibration of differential scanning calorimeters. Certified melting point/triple point29.7646 °C	unit
NIST-1751	Gallium - Melting point and point and the set of the s	200 g

Code	Product	Unit
NIST-1969	Rubidium - Melting point/triple point A fixed-point device for use in the realisation of internationally accepted secondary reference points and/or triple points. They are not intended for calibration of differential scanning calorimeters.	unit
	Certified melting point/triple point 39.30 °C	
NIST-1970	Succinonitrile - Melting point/triple point A fixed-point device for use in the realisation of internationally accepted secondary reference points and/or triple points. They are not intended for calibration of differential scanning calorimeters. Certified melting point/triple point	unit
NIST-1971	Indium - Melting point/triple point A fixed-point device for use in the realisation of internationally accepted secondary reference points and/or triple points. They are not intended for calibration of differential scanning calorimeters. Certified melting point/triple point	60 g
NIST-1972	1,3-Dioxolan-2-one (ethylene carbonate) - Melting point/triple point A fixed-point device for use in the realisation of internationally accepted secondary reference points and/or triple points. They are not intended for calibration of differential scanning calorimeters. Certified melting point/triple point	60 g
Flash point		
ERM-FC032	n-Nonane The certified value was determined by the Abel closed cup method described in the Institute of Petroleum Standard IP170/95 and also published as British Standard BS2000:Part 170: 1995. The certified value is corrected to standard barometric pressure at 0°C. Certified value	100 mL
	Non-equilibrium flash point	
ERM-FC033	n-Decane The certified value was determined by the Abel closed cup method described in the Institute of Petroleum Standard IP170/95 and also published as British Standard BS2000:Part 170: 1995. The certified value is corrected to standard barometric pressure at 0°C. Certified value	100 mL
	Non-equilibrium flash point	
LGC2000	Diethyl phthalate This certified reference material is intended for use in checking and calibrating apparatus used for determining flash point by closed cup equilibrium methods. The certified value was determined from the results of an interlaboratory study, where the participants used IP/304 Pensky-Martens Closed Cup or IP/303 Setaflash methods. Certified value	500 mL
	Equilibrium closed cup flash point 159.0 °C	
Combustion	calorimetry	
NIST-39J	Benzoic acid - Heat of combustion Certified value 26.434 MJ/kg	30 g
NIST-1656	Thianthrene - Heat of combustion Certified value 33.480 MJ/kg	30 g
NIST-1657	Synthetic refuse-derived fuel - Heat of combustion Certified values HHV* (dry)	100 g
NIST-2151	Nicotinic acid - Heat of combustion Certified value	25 g
NIST-2152	Urea Certified value10.536 MJ/kg	25 g
NIST-2682B	Coal (sub-bituminous) - Sulphur, mercury and heat of combustion Certified values S0.4917 % Hg108.8 µg/kg Indicative values for Ash content, Gross calorific value	50 g
		F0
NIST-2684B	Coal (bituminous) - Sulphur, mercury and heat of combustion Certified values S	50 g

Code	Product	Unit
NIST-2685B	Coal - Sulphur, mercury and heat of combustion This Standard Reference Material (SRM [®]) is intended primarily for use in the evaluation of techniques employed in the determination of sulphur, mercury, ash content, and calorific value (MJ·kg-1) in coal and materials of a similar matrix. NIST-2685b consists of 50 g of bituminous coal ground to pass a 250 µm (60 mesh) sieve, homogenized, and packaged in an amber glass bottle. Certified values	50 g
	S517 mg/kg Hg517 mg/kg Indicative values for the ash content, gross calorific value and elements	
NIST-2692b	Coal (bituminous) - Sulphur, mercury and gross calorific value Certified values	50 g
	S133.3 μg/kg ± 4.1 μg/kg Reference values	
Solution calc	Ash Content (mass fraction)	
NIST-1655	Potassium chloride - water solution calorimetry Intended for use in verifying or comparing results obtained by calorimeters measuring enthalpies of endothermic solution processes. Certified value Heat of solution (absorbed)	30 g
Vapour press	sure	
NIST-746	Cadmium - vapour pressure Certified values for vapour pressure as a function of temperature (350-594 K)	1 rod
Thermal con	ductivity	
IRMM-440A	Resin bonded fibre board (300 x 300 x 35 mm) - Thermal conductivity Certified value for thermal conductivity between -10°C and +50 °C	board
IRMM-440B	Resin bonded fibre board (500 x 500 x 35 mm) - Thermal conductivity Certified value for thermal conductivity between -10°C and +50 °C	board
IRMM-440C	Resin bonded fibre board (600 x 600 x 35 mm) - Thermal conductivity Certified value for thermal conductivity between -10°C and +50 °C	board
IRMM-440D	Resin bonded fibre board (1000 x 1000 x 35 mm) - Thermal conductivity Certified value for thermal conductivity between -10°C and +50 °C	board
NIST-RM 8420	Electrolytic iron rod 0.64 cm (D) x 5.0 cm Thermal conductivity and electrical resistivity as a function of temperature (2-1000 K)	1 rod
BCR-039A	Pyrex glass - Thermal conductivity 30 cm x 30 cm x 20 mm Certified value (23 °C) λ 1.143 8 W/m.K The function to calculate λ for temperature between –75 and 195 °C is given in the CoA	board
BCR-039B	Pyrex glass - Thermal conductivity 30 cm x 30 cm x 30 mm Certified value (23 °C) λ 1.143 8 W/m.K The function to calculate λ for temperature between –75 and 195 °C is given in the CoA	board
BCR-039C	Pyrex glass - Thermal conductivity 30 cm x 30 cm x 50 mm Certified value (23 °C) λ	board

Code	Product	Unit
BCR-724A	Glass-ceramic - Thermal diffusivity, thermal conductivity	rod
	Rod in container (diam.= 13.0 mm height > 18 mm)	
	Thermal diffusivity, α Certified value [m²/s ·10 ⁻⁶]	
	α = 4.406 - 1.351.10 ⁻² T + 2.133 · 10 ⁻⁵ T ² - 1.541 · 10 ⁻⁸ · T ³ + 4.147 · 10 ⁻¹² T ⁴ Uncertainty:6.1%	
	Thermal conductivity, λ	
	Certified value [W/(m·K)]	
	$\lambda = 2.332 + 515.1/T$ Uncertainty:6.5%	
BCR-724B	Glass-ceramic - Thermal diffusivity, thermal conductivity Rod in container (diam.= 13.9 mm height > 21 mm)	rod
	Thermal diffusivity, α	
	Certified value [m²/s ·10 ⁻⁶]	
	α = 4.406 - 1.351.10 ⁻² T + 2.133 · 10 ⁻⁵ · T ² - 1.541 · 10 ⁻⁸ · T ³ + 4.147 · 10 ⁻¹² T ⁴ Uncertainty:6.1%	
	Thermal conductivity, λ	
	Certified value [W/(m·K)]	
	$\lambda = 2.332 + 515.1/T$ Uncertainty:6.5%	
BCR-724C	Glass-ceramic - Thermal diffusivity, thermal conductivity	rod
	Rod in container (diam.= 25.9 mm height > 22 mm)	
	Thermal diffusivity, α	
	Certified value [m²/s ·10 ⁻⁶]	
	α = 4.406 - 1.351.10 ⁻² T + 2.133 · 10 ⁻⁵ · T ² - 1.541 · 10 ⁻⁸ · T ³ + 4.147 · 10 ⁻¹² T ⁴ Uncertainty:6.1%	
	Thermal conductivity, λ	
	Certified value [W/(m-K)]	
	$\lambda = 2.332 + 515.1/T$ Uncertainty:6.5%	
BCR-724D	Glass-ceramic - Thermal diffusivity, thermal conductivity	rod
	Rod in container (diam.= 26.9 mm height > 22 mm)	
	Thermal diffusivity, α Certified value	
	[m ² /s ·10 ⁻⁶]	
	α = 4.406 - 1.351.10 ⁻² T + 2.133 · 10 ⁻⁵ · T ² - 1.541 · 10 ⁻⁸ · T ³ + 4.147 · 10 ⁻¹² T ⁴ Uncertainty:6.1%	
	Thermal conductivity, λ	
	Certified value [W/(m·K)]	
	$\lambda = 2.332 + 515.1/T$ Uncertainty:6.5%	
BCR-724E	Glass-ceramic - Thermal diffusivity, thermal conductivity	rod
	Rod in container (diam.= 50.7 mm height > 25 mm)	
	Thermal diffusivity, α	
	Certified value [m²/s ·10 ⁻⁶]	
	α = 4.406 - 1.351.10 2 T + 2.133 $^{\circ}$ 10 5 T 2 - 1.541 $^{\circ}$ 10 8 T 3 + 4.147 $^{\circ}$ 10 12 T 4 Uncertainty:6.1%	
	Thermal conductivity, λ	
	Certified value [W/(m·K)]	
	$\lambda = 2.332 + 515.1/T$ Uncertainty:6.5%	

Thermal expansion

•	bansion	
Code	Product	Uni
NIST-731L1	Borosilicate glass	5 cn
	6.4 mm x 51 mm Certified values for thermal expansion as a function of temperature (80-680 K)	
NIST-731L2	Borosilicate glass	10 cn
	6.4 mm x 102 mm	
	Certified values for thermal expansion as a function of temperature (80-680 K)	
NIST-731L3	Borosilicate glass	15 cn
	6.4 mm x 152 mm	
	Certified values for thermal expansion as a function of temperature (80-680 K)	
NIST-738	Stainless steel Certified values for thermal expansion as a function of temperature (293-780 K)	51x6.4 mn
Thermal res		
NIST-1449	Fumed silica board	board
	60 cm x 60 cm x 2.54 cm	
	Certified values for thermal resistance as a function of density and pressure	
NIST-1459	Fumed silica board	boar
	30 cm x 30 cm x 2.45 cm	
	Certified values for thermal resistance as a function of density and pressure	
NIST-1450C	Fibrous glass board	boar
	61 cm x 61 cm x 2.54 cm	
	Certified values for thermal resistance as a function of bulk density and temperature (280-340 K)	
NIST-1452	Fibrous glass blanket for high precison measurements - Thermal resistance This Standard Reference Material (SRM [®]) is intended for use in evaluation of a guarded hot plate (GHP) or the calibration of a heat flow meter (HFM). It is supplied as a fibrous glass batt of nominal dimensions 60 x 60 x 2.54 cm. Each unit of NIST-1452 is a individually characterised specimen.	each
NIST-1453	Expanded polystyrene board 93 cm x 66 cm x 1.34 cm	board
	Certified values for thermal resistance as a function of bulk density and temperature (285-310 K)	
Glass liquid	temperature	
NIST-773	Soda-lime-silica	65 g
	2.5 cm x 2.5 cm x 0.6 cm	
	Intended for checking test methods and for calibrating equipment used to determine the liquidus temperature of	
	glass by the gradient furnace method per ASTM C 829.	
	A (boat)	
	Certified value	
	Certified value	
		050
NIST-1416	Aluminosilicate glass - Liquidus temperature	250 g
	Certified value for the gradient liquidus temperature is 1147 ± 4 °C	
Tomporature	e measuring devices	
NIST-934	Clinical laboratory thermometer Calibrated at 4 temperatures 0, 25, 30 and 37 °C	uni
NIST-1967	Platinum thermocouple	each
	Platinum wire 0.51 mm diameter and 1 m long	
	Intended for use as a standard reference thermoelement for calibration of base-metal and noble-metal	
	thermocouple materials (-197 °C - 1768 °C)	
	Cold vo. Distinum Thermosouple Thermometer	each
NIST-1749	Gold vs. Platinum Thermocouple Thermometer	eaci
NIST-1749	Certified Thermometer for the range 0°C to 1000°C on the International Temperature Scale of 1990.	eaci

Particles and surface properties

Particle size

Code	Product	Unit
AEA1001	Aerosol fibre analogue shape standard (aqueous suspension)	10 mL
	Reference values: Particles per vial 1.0 x 10 ⁷ , Particle length 3.09 μm, Particle width 1.67 μm, Particle depth 0.96 μm, Indicative aerodynamic diameter – motion perpendicular to major axis 2.89 μm, Indicative aerodynamic diameter – motion parallel to major axis 3.14 μm.	
	BCR-066 - BCR-132	
	For these materials the distribution is expressed as a curve of the cumulative mass of particles under versus particle size. In the case of particles of less than 90 μ m diameter their size is expressed as the equivalent Stokes' diameter determined from the settling rate of the particles in a viscous fluid. For I particles the equivalent volume diameter determined by sieving was preferred.	he
BCR-066	Quartz - Stokes' diameter Certified value Stokes' diameter0.35 - 3.50 μm	10 g
BCR-067	Quartz - Stokes' diameter Certified values	10 g
	Stokes' diameter	400
BCR-068	Quartz - Volume diameter Certified values Volume diameter	100 g
BCR-069	Quartz - Stokes' diameter	10 g
Dort 000	Certified values	10 9
	Stokes' diameter14 - 90 μm	
BCR-070	Quartz - Stokes' diameter Certified values Stokes' diameter1.2 - 20 μm	10 g
BCR-130	Quartz - Volume diameter Certified values	50 g
	Volume diameter50 - 220 μm	
BCR-131	Quartz - Volume diameter Certified value	200 g
	Volume diameter	
BCR-132	Quartz - Volume diameter Certified value Volume diameter	700 g
BCR-165	· · · · · · · · · · · · · · · · · · ·	vial
BCK-105	Latex spheres, nominal 2 µ Average particle diameter2.223 ± 0.013 µm Each vial contains 2 mL of an aqueous suspension of latex spheres at a mass concentration of about 0.2 g/L. About 0.5% of the particles are agglomerated doublets	viai
BCR-166	· · · ·	viol
DCK-100	Latex spheres, nominal 4.8 μ Each vial contains 2 mL of an aqueous suspension of latex spheres at a mass concentration of about 0.2 g/L. About 0.5% of the particles are agglomerated doublets. Average particle diameter	vial
BCR-167	Latex spheres, nominal 9.6 μ Each vial contains 2 mL of an aqueous suspension of latex spheres at a mass concentration of about 1.4 g/L. About 0.5% of the particles are agglomerated doublets. Average particle diameter	vial
	NIST-659 - NIST-RM 8010	
	These materials are for evaluating and calibrating specific types of particle size measuring instruments, including light scattering, electrical zone flow-through counters, optical and scanning electron microscopes, sedimentation systems and wire cloth sieving devices.	
NIST-659	Silicon nitride - Particle size Certified value	set (5)
	Particle size0.2 - 10 μm	

Particles and surface properties

Code	Product	Unit
NIST-1021	Glass beads - Particle size This Standard Reference Material (SRM [®]) is intended for use in the evaluation and calibration of equipment used to measure particle size distributions (PSD) in the 2 µm to 12 µm diameter range. Typical methods for PSD determination would be laser light scattering (LLS), electrical sensing zone (ESZ), and sedimentation. Each unit of NIST-1021 consists of a single bottle containing approximately 4 g of solid spherical soda-lime glass beads. Certified value Particle size	4 g
NIST-1003C	Glass beads - Particle size Certified value Particle size18.9 - 43.3 μm	28 g
NIST-1004B	Glass beads - Particle size Certified value Particle size40 - 150 μm	43 g
NIST-1017b	Glass beads - Particle size Certified value Particle size100 - 400 μm	70 g
NIST-1018B	Glass beads - Particle size Certified value Particle size220 - 750 μm	87 g
NIST-1019B	Glass beads - Particle size Certified value Particle size750 - 2450 μm	200 g
NIST-1690	Polystyrene (0.5 wt. % in water) - Particle size Certified value Particle size0.895 μm	5 mL
NIST-1691	Polystyrene (0.5 wt. % in water) - Particle size Certified value Particle size0.269 μm	5 mL
NIST-1692	Polystyrene (0.25 wt. % in water) - Particle size Certified value Particle size2.982 μm	5 mL
NIST-1961	Polystyrene (0.5 wt. % in water) - Particle size Certified value Particle size29.64 μm	5 mL
NIST-1963A	Polystyrene (0.5 wt. % in water) - Particle size This Standard Reference Material (SRM [®]) is intended for the calibration/validation of particle sizing instruments, including electron microscopes, differential mobility analysers, scanning surface inspection systems, and other light scattering instruments. A unit of NIST-1963a consists of 5 mL of polystyrene spheres in deionized filtered (0.2 μm pore size) water. Certified value Modal sphere diameter	5 mL
NIST-1964	Polystyrene (0.5 wt. % in water) - Particle size This Standard Reference Material (SRM [®]) is intended for the calibration/validation of particle sizing instruments, including electron microscopes, differential mobility analysers, scanning surface inspection systems, and other light scattering instruments. A unit of NIST-1964 consists of 5 mL of polystyrene spheres in deionized filtered (0.2 μm pore size) water. Certified value Modal sphere diameter	5 mL
NIST-1965	Polystyrene - Particle size This Standard reference material is intended for use as an optical microscopy measurement standard and teaching tool. Certified value	1 slide
NIST-1978	Hexagonal array9.94 μm Unordered clusters 9.89 μm Zirconium oxide - Particle size Certified value Particle size 0.33 – 2.19 μm	5 g
NIST-1982	Particle size0.33 – 2.19 μm Zirconia thermal spray powder - Particle size Certified value Particle size10 - 150 μm	10 g

Code	Product							Un
NIST-1984	Thermal spra	y powder - F	Particle size	distribution				14
						n the calibration of		
						NIST-1984 consist	ts of a single bottle	
	containing appro		-	-				
	Certified PSD Va		0		M)			
	Cumulative Mas	s Fraction		ied Diameter		Uncertair	nty	
	(%)		(µm)			(µm)		
	10							
	25 50							
	75							
	90					0.9		
NIST-1985	Thermal spra	v powder - F	Particle size	distribution				14 (
						he calibration of e	auipment used to	
						IST-1985 consists		
	containing appro	oximately 14 g	of tungsten carb	ide/cobalt po	wder.		Ū	
	Certified PSD Va	alues by scann	ing electron mid	croscopy (SE	M)			
	Cumulative Mas	s Fraction	Certif	ied Diameter		Uncertair	ntv	
	(%)		(µm)			(µm)	,	
	10							
	25							
	50							
	75							
	90					2.5		
NIST-RM 8010	Sand - Partic	le size						3 x 150 g
	Reference value	•						
	Particle size	30 - 325 μι	m					
		•						0 400
NIST-2806A	Medium test							2 x 400 ml
						n for Standardisat		
		S 11171, "Hydi	raulic Fluid Pow	er - Calibratio	on of Liquid A	utomatic Particle	Counters"	
	Certified values							
	Certified values							
	Particle	Projected						
		Area	u	u .	u	u Di ku u u	u 	
	Particle Concentration	Area Diameter	Sampling	Volume	Length	и Digitalization	Fractionation	
	Particle Concentration (Particles/mL)	Area Diameter (µm)	Sampling (µm)	Volume (µm)	Length (µm)	Ū	Fractionation (µm)	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1	Sampling (µm) 0.004	Volume (µm) 0.004	Length (µm) 0.0006	0.127	Fractionation (μm) 0.051	
	Particle Concentration (Particles/mL) 108400 27035	Area Diameter (μm) 1	Sampling (µm) 0.004 0.006	Volume (μm) 0.004 0.006	Length (µm) 0.0006 0.00003	0.127 0.123	Fractionation (μm) 0.051 0.049	
	Particle Concentration (Particles/mL) 108400 27035 11209	Area Diameter (μm) 1 2	Sampling (µm) 0.004 0.006 0.009	Volume (µm) 0.004 0.006 0.010	Length (µm) 0.0006 0.00003 0.0005	0.127	Fractionation (μm) 0.051 0.049 0.059	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095	Area Diameter (μm) 1 2 3	Sampling (µm) 0.004 0.006 0.009 0.011	Volume (µm) 0.004 0.006 0.010 0.013	Length (µm) 0.0006 0.00003 0.0005 0.002	0.127 0.123 0.122	Fractionation (µm) 0.051 0.049 0.059 0.094	
	Particle Concentration (Particles/mL) 108400 27035	Area Diameter (μm) 1 2 4 5 6	Sampling (μm) 0.004 0.006 0.009 0.011 0.012 0.016	Volume (μm) 0.004 0.006 0.010 0.013 0.015	Length (μm) 0.0006 0.00003 0.0005 0.002 0.004 0.006		Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573	Area Diameter (μm) 1 2 3	Sampling (μm) 0004 0.006 0.009 0.011 0.012 0.016 0.019	Volume (μm) 0.004 0.010 0.013 0.015 0.016 0.017	Length (μm) 0.0006 0.00003 0.0005 0.002 0.004 0.006 0.009	0.127 0.123 0.122 0.121 0.121 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055	Area Diameter (μm) 2	Sampling (μm) 0004 0.006 0.009 0.011 0.012 0.016 0.019 0.024	Volume (μm) 0.004 0.006 0.010 0.013 0.015 0.016 0.017 0.018	Length (μm) 0.0006 0.00003 0.002 0.004 0.006 0.009 0.013	0.127 0.123 0.122 0.121 0.121 0.131 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.210	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8	Area Diameter (μm) 2	Sampling (μm) 004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.031	Volume (μm) 0.004 0.006 0.010 0.013 0.015 0.016 0.017 0.018 0.019	Length (µm) 0.0006 0.0003 0.002 0.004 0.006 0.009 0.009 0.013	0.127 0.123 0.122 0.121 0.121 0.131 0.131 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.210 0.235	
	Particle Concentration (Particles/mL) 108400 27035 11209 3737 2395 1573 1055 725.8 513.7	Area Diameter (μm) 1	Sampling (µm) 006 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041	Volume (µm) 0.004 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.019	Length (µm) 0.0006 00005 0005 0002 004 006 009 0013 0.013 0.017 0.021	0.127 0.123 0.122 0.121 0.121 0.131 0.131 0.131 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.210 0.235 0.289	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6	Area Diameter (μm) 1	Sampling (µm) 006009 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.018 0.019 0.021	Length (µm) 00006 0.000300005 0.002 0.004 0.004 0.009 0.013 0.017 0.021 0.025	0.127 0.123 0.122 0.121 0.121 0.131 0.131 0.131	Fractionation (µm) 0.051 0.059 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4	Area Diameter (μm) 2	Sampling (μm) 004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052 0.065 0.081	Volume (µm) 0.004 0.006 0.013 0.015 0.015 0.016 0.017 0.018 0.019 0.021 0.022 0.025	Length (µm) 0006 0.0003 0.002 0.004 0.006 0.006 0.009 0.013 0.017 0.021 0.025 0.029 0.031	0.127 0.123 0.122 0.121 0.121 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 13. 33. 45. 67. 78. 9	Sampling (µm) 0.004 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.031 0.041 0.052 0.065 0.081 0.101	Volume (µm) 0.004 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.021 0.023 0.025 0.027 0.030	Length (µm) 0.0006 0.0003 0.0005 0.002 0.004 0.006 0.009 0.013 0.017 0.021 0.025 0.029 0.031 0.033	0.127 0.123 0.122 0.121 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.235 0.289 0.289 0.351 0.467 0.616 0.810	
	Particle Concentration (Particles/mL) 108400 27035 11209 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4 170.4 136.8	Area Diameter (μm) 1	Sampling (µm) 0.004 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052 0.065 0.081 0.101 0.123	Volume (µm) 0.004 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.021 0.023 0.025 0.027 0.030 0.032	Length (µm) 0.0006 00005 0005 0002 004 009 0013 0013 0017 0021 0021 0025 0029 0031 0033 0033	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.167 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.810 0.810 0.90	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4 170.4 136.8 111.3	Area Diameter (μm) 1	Sampling (µm) 006009 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052 0.065 0.081 0.101 0.123 0.146	Volume (µm) 0.004 0.006 0.013 0.015 0.015 0.017 0.018 0.019 0.021 0.022 0.022 0.030 0.034	Length (µm) 00006 0.000300005 0.002 0.004 0.004 0.009 0.003 0.013 0.021 0.025 0.029 0.021 0.021 0.023 0.033 0.033	0.127 0.123 0.122 0.121 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.236 0.210 0.235 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190	
	Particle Concentration (Particles/mL) 108400 27035 6095 3737 2395 1573 1055 725.8 513.7. 374.6 281.0. 216.4. 170.4. 136.8 111.3. 91.33	Area Diameter (μm) 2	Sampling (μm) 004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.041 0.041 0.052 0.065 0.081 0.101 0.123 0.146 0.168	Volume (µm) 0004 0.006 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.021 0.023 0.025 0.027 0.030 0.032 0.035	Length (µm) 00006 0.00030.0005 0002 0.004 0.004 0.004 0.009 0.013 0.021 0.025 0.029 0.023 0.033 0.033 0.033	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.059 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.439	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0. 216.4 170.4 136.8 111.3 91.33 75.29	Area Diameter (μm) 1 2 3 4 5 6 7. 7. 8. 9. 10. 11. 12. 13. 12. 13. 14. 15. 16. 17. 18. 17. 18.	Sampling (μm) 004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.041 0.041 0.041 0.052 0.065 0.081 0.101 0.123 0.146 0.187	Volume (µm) 0.004 0.006 0.010 0.015 0.015 0.016 0.017 0.018 0.021 0.022 0.025 0.027 0.030 0.032 0.035 0.036	Length (µm) 0006 0.0003 0005 0.002 004 009 004 009 003 017 021 025 029 031 033 033 033 033 033 033 033 033 033	0.127 0.123 0.122 0.121 0.121 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.616 0.810 1.090 1.439 1.439 1.706	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 3 4 5 6 7 8 9 10 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 17 18 19 19 19	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052 0.065 0.081 0.065 0.081 0.123 0.146 0.146 0.168 0.187 0.204	Volume (µm) 0.004 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.021 0.025 0.025 0.025 0.030 0.032 0.034 0.035 0.036	Length (µm) 0.0006 00005 0005 0002 004 006 009 013 0013 0017 0021 0021 0029 0029 0031 0033 0033 0033 0033 0034 0036 0034 0036	0.127 0.123 0.122 0.121 0.121 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.236 0.235 0.289 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.439 1.706 2.036	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4 170.4 136.8 111.3 91.33 75.29 62.17 51.35 42.40	Area Diameter (μm) 1	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052 0.065 0.081 0.101 0.101 0.123 0.146 0.187 0.204 0.204 0.235	Volume (µm) 0.004 0.006 0.010 0.013 0.015 0.015 0.017 0.018 0.019 0.021 0.022 0.022 0.030 0.032 0.034 0.036 0.036	Length (µm) 00006 0.000300005 0.002 0.004 0.004 0.009 0.013 0.021 0.021 0.025 0.029 0.023 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.041	0.127 0.123 0.122 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.236 0.210 0.235 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.439 2.036 2.209 2.473	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1055 725.8 725.8 513.7 374.6 281.0 216.4 170.4 136.8 111.3 91.33 75.29 62.17 51.35 42.40 35.01	Area Diameter (μm) 12 33 45 67 78 91011 1213 1314 1514 1514 1415 1617 1819 1920 2021 2122	Sampling (μm) 004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.024 0.024 0.041 0.052 0.065 0.081 0.101 0.123 0.146 0.168 0.168 0.168 0.219 0.225	Volume (µm) 0004 0.006 0.010 0.013 0.015 0.016 0.017 0.018 0.021 0.022 0.022 0.022 0.032 0.035 0.036 0.036 0.036	Length (µm) 00006 0.000300005 0002 0004 0.004 0.004 0.009 0.013 0.021 0.025 0.029 0.023 0.033 0.033 0.033 0.033 0.033 0.034 0.036 0.041 0.047	0.127 0.123 0.122 0.121 0.121 0.131	Fractionation (µm) 0.051 0.059 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.810 1.090 1.190 1.439 1.706 2.036 2.509 2.473 2.738	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 12 23 45 67 78 99 1011 1213 1314 1515 1617 1718 1617 1718 1920 2021 2223	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.031 0.041 0.052 0.065 0.081 0.065 0.081 0.101 0.123 0.146 0.168 0.187 0.204 0.219 0.235 0.255 0.281	Volume (µm) 0.004 0.010 0.0113 0.015 0.015 0.015 0.016 0.017 0.018 0.019 0.021 0.021 0.025 0.025 0.025 0.025 0.025 0.036 0.036 0.036 0.036 0.036 0.037	Length (µm) 0.0006 0.0005 0.002 0.04 0.002 0.04 0.06 0.09 0.013 0.017 0.021 0.021 0.021 0.025 0.029 0.033 0.033 0.033 0.033 0.033 0.034 0.041 0.056 0.068	0.127 0.123 0.122 0.121 0.121 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.190 1.190 1.706 2.509 2.509 2.473 2.738 2.953	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1	Sampling (µm) 0.004 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.024 0.041 0.052 0.081 0.041 0.123 0.146 0.146 0.187 0.204 0.219 0.235 0.255 0.281 0.314	Volume (µm) 0.004 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.021 0.021 0.022 0.027 0.030 0.032 0.034 0.036 0.036 0.036 0.037 0.038	Length (µm) 0.0006 00003 0.0005 0002 004 009 0013 0013 0017 0021 0021 0021 0025 0029 0031 0033 0033 0033 0033 0033 0034 0034 0036 0041 0056 0088 0081	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.616 0.810 1.190 1.439 1.439 1.706 2.036 2.509 2.473 2.738 2.953 3.267	
	Particle Concentration (Particles/mL) 108400 27035 11209 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4 170.4 136.8 111.3 91.33 75.29 62.17 51.35 42.40 35.01 28.95 23.99 19.95	Area Diameter (μm) 1	Sampling (µm) 006009 0.009011 0.012019 0.016019 0.024 0.024 0.031 0.041 0.052 0.081 0.101 0.123 0.146 0.187 0.204 0.225 0.225 0.281 0.314 0.356	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.018 0.019 0.021 0.021 0.025 0.027 0.030 0.032 0.034 0.036 0.036 0.036 0.036 0.036 0.037 0.039	Length (µm) 00006 00005 0005 002 004 009 0013 0017 0021 0017 0021 0021 0021 0025 0029 0031 0033 0033 0033 0033 0033 0033 0034 0034 0034 0041 0056 0068 0081 0097 0097	0.127 0.123 0.122 0.121 0.121 0.131	Fractionation (µm) 0.051 0.049 0.059 0.094 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.616 0.810 1.439 1.706 2.509 2.509 2.473 2.738 2.953 3.267 3.450	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0. 216.4 170.4 136.8 111.3 91.33 75.29 62.17 51.35 42.40 35.01 28.95 23.99 19.95 16.66 13.98	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	Sampling (µm) 006 009 0011 0012 0016 019 0024 0031 0041 0052 065 0081 0101 0123 0168 0101 0123 0168 0187 024 0168 0187 024 0219 0245 0255 0281 0314 0356 0316 0316 0316 0187 024 024 010 010 010 010 010 010 010 005 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 0000 	Volume (µm) 00040 0.00600100 0.01300160 0.01500160 0.0170018001900 0.02100230025002700300032003200330033500336003350033600336003360033600336003360033600336003360033700386003370038003900400041000000000000000000000	Length (µm) 00006 00005 0002 0002 0004 009 0013 0017 0021 0025 0029 0017 0025 0029 0031 0033 0033 0033 0033 0033 0033 0034 0036 0041 0047 0056 0081 0081 0097 0015 0097 0115 0135	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.059 0.059 0.094 0.246 0.210 0.235 0.210 0.235 0.235 0.289 0.351 0.467 0.810 1.190 1.190 1.190 1.439 2.036 2.509 2.473 2.738 2.953 3.267 3.450 3.603 3.983	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.031 0.041 0.052 0.065 0.081 0.065 0.081 0.123 0.146 0.168 0.187 0.204 0.219 0.235 0.255 0.281 0.314 0.356 0.408 0.468 0.539	Volume (µm) 0.004 0.010 0.013 0.015 0.016 0.017 0.018 0.019 0.021 0.021 0.023 0.025 0.025 0.030 0.032 0.034 0.036 0.036 0.036 0.036 0.036 0.037 0.038 0.039 0.039 0.041 0.043	Length (µm) 0.0006 00003 00005 0002 004 006 009 013 0017 0021 0021 0021 0025 0029 0031 0033 0033 0033 0033 0033 0033 0034 0034 0036 0047 0056 0056 0088 0081 0097 0135 0158	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.236 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.810 1.190 1.190 1.439 1.706 2.036 2.509 2.473 2.953 3.267 3.450 3.603 3.983 4.144	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4 170.4 136.8 111.3 91.33 75.29 62.17 51.35 42.40 35.01 28.95 23.99 19.95 16.66 13.98 11.80 10.02	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.031 0.041 0.052 0.065 0.081 0.041 0.123 0.146 0.123 0.146 0.187 0.224 0.235 0.281 0.255 0.281 0.314 0.356 0.408 0.408 0.468 0.539 0.618	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.018 0.021 0.021 0.022 0.022 0.030 0.032 0.034 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038 0.037 0.038 0.039 0.041 0.045	Length (µm) 00006 00003 00005 0002 004 009 0013 0013 0017 0021 0021 0021 0021 0025 0029 0031 0033 0033 0033 0033 0033 0033 0034 0036 0041 0056 0041 0056 0081 0056 0081 0097 0115 0158 0184	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.616 0.810 1.090 1.190 1.439 2.036 2.509 2.473 2.473 2.738 2.953 3.267 3.450 3.603 3.983 4.144 4.247	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.031 0.041 0.052 0.065 0.081 0.041 0.123 0.146 0.123 0.146 0.187 0.224 0.235 0.281 0.255 0.281 0.314 0.356 0.408 0.408 0.468 0.539 0.618	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.018 0.021 0.021 0.022 0.022 0.030 0.032 0.034 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038 0.037 0.038 0.039 0.041 0.045	Length (µm) 00006 00003 00005 0002 004 009 0013 0013 0017 0021 0021 0021 0021 0025 0029 0031 0033 0033 0033 0033 0033 0033 0034 0036 0041 0056 0041 0056 0081 0056 0081 0097 0115 0158 0184	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.616 0.810 1.090 1.190 1.439 2.036 2.509 2.473 2.473 2.738 2.953 3.267 3.450 3.603 3.983 4.144 4.247	
	Particle Concentration (Particles/mL) 108400 27035 11209 6095 3737 2395 1573 1055 725.8 513.7 374.6 281.0 216.4 170.4 136.8 111.3 91.33 75.29 62.17 51.35 42.40 35.01 28.95 23.99 19.95 16.66 13.98 11.80 10.02	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	Sampling (µm) 0.004 0.006 0.009 0.011 0.012 0.016 0.019 0.024 0.024 0.031 0.041 0.052 0.065 0.081 0.041 0.123 0.146 0.123 0.146 0.187 0.224 0.235 0.281 0.255 0.281 0.314 0.356 0.408 0.408 0.468 0.539 0.618	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.018 0.021 0.021 0.022 0.022 0.030 0.032 0.034 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038 0.037 0.038 0.039 0.041 0.045	Length (µm) 00006 00003 00005 0002 004 009 0013 0013 0017 0021 0021 0021 0021 0025 0029 0031 0033 0033 0033 0033 0033 0033 0034 0036 0041 0056 0041 0056 0081 0056 0081 0097 0115 0158 0184	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.246 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.616 0.810 1.090 1.190 1.439 2.036 2.509 2.473 2.473 2.738 2.953 3.267 3.450 3.603 3.983 4.144 4.247	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 30 32	Sampling (µm) 006009 0.009011 0.012016 0.019012 0.016019 0.024 0.031 0.041 0.052 0.065 0.081 0.101 0.101 0.123 0.146 0.168 0.187 0.224 0.225 0.281 0.255 0.281 0.314 0.356 0.408 0.468 0.468 0.539 0.618 0.706	Volume (µm) 00040006 0.0100013 0.0150016 0.0150017 0.0150018 0.0190021 0.0210023 0.0250027 0.0270030 0.030 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038 0.038 0.038 0.039 0.041 0.041 0.047	Length (µm) 00006 0.0003 0.0005 0.002 0.004 0.004 0.009 0.013 0.021 0.021 0.022 0.022 0.023 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.036 0.041 0.047 0.026 0.041 0.047 0.056 0.081 0.097 0.155 0.158 0.184 0.212	0.127 0.123 0.122 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.167 0.246 0.210 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.439 1.706 2.509 2.473 2.738 2.953 3.267 3.450 3.450 3.603 3.983 4.144 4.247 4.914	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 32 eparing susp	Sampling (µm) 006009 0.0090011 0.0120016 0.0190014 0.0190024 0.024 0.0650081 0.065 0.081 0.101 0.123 0.146 0.168 0.204 0.225 0.281 0.225 0.281 0.314 0.356 0.408 0.468 0.468 0.468 0.539 0.618 0.706 Densions in O	Volume (µm) 0.0040 0.0100 0.0130 0.0150 0.0150 0.0160 0.0170 0.0190 0.0210 0.0210 0.0220 0.0320 0.0300 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0360 0.0370 0.0380 0.0380 0.0390 0.0410 0.0410 0.0450 0.0470 0.0380 0.0390 0.0440 0.04700 0.0470 0.04700 0.04700 0.04700 0.047	Length (µm) 00006 0.0003 0.0005 0.002 0.004 0.004 0.009 0.013 0.021 0.021 0.022 0.022 0.022 0.023 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.036 0.041 0.047 0.056 0.081 0.097 0.115 0.135 0.184 0.212 0.184 0.212		Fractionation (µm) 0.051 0.049 0.059 0.094 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.439 1.706 2.509 2.473 2.738 2.953 3.267 3.450 3.450 3.603 3.983 4.144 4.247 4.914	including
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 32 eparing susp is intended	Sampling (µm) 006009 0.0090011 0.0120016 0.0190016 0.0190024 0.031 0.041 0.052 0.065 0.081 0.101 0.123 0.146 0.168 0.187 0.204 0.219 0.255 0.281 0.255 0.281 0.314 0.356 0.408 0.468 0.539 0.618 0.706 0.618 0.706 0.909	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.018 0.021 0.021 0.022 0.027 0.027 0.030 0.030 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038 0.038 0.038 0.039 0.041 0.041 0.041 0.045 0.047 1.045 0.047 0.045 0.047 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.047 0.045 0.047 0.047 0.047 0.047 0.045 0.047 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045 0.047 0.045	Length (µm) 00006 00005 00005 0002 0004 009 0013 0017 0021 0021 0025 0029 0031 0031 0033 0033 0033 0033 0033 0033 0033 0034 0047 0047 0056 0041 0068 0041 0097 0155 0158 01	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.439 1.706 2.509 2.473 2.738 2.953 3.267 3.450 3.603 3.983 4.144 4.247 4.914	
	Particle Concentration (Particles/mL) 108400	Area Diameter (μm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 32 eparing susp is intended ers, in accord	Sampling (µm) 006 009 001 0012 0016 0019 0016 0019 0016 0019 0016 0031 0041 0052 0065 0081 0065 0081 0101 0123 0168 019 0101 0123 0168 0187 024 024 0255 0281 0314 0356 0314 0356 038 0408 0408 0408 0408 0539 0618 0706 0618 0706 0081 009 0081 00081 0081 00081 00081 00081 00081 000 0081 000 0081 000 0081 0000 0000 00000000	Volume (µm) 0.004 0.010 0.013 0.015 0.015 0.016 0.017 0.019 0.021 0.021 0.022 0.022 0.030 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.038 0.038 0.038 0.039 0.041 0.041 0.041 0.043 0.045 0.047 1.0017 1.0017 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0019 1.0021 1.0030 1.0030 1.0036 1.0036 1.0036 1.0036 1.0036 1.0036 1.0036 1.0037 1.0038 1.0041 1	Length (µm) 00006 00005 00005 0002 0004 009 0013 0017 0021 0021 0025 0029 0031 0031 0033 0033 0033 0033 0033 0033 0033 0034 0047 0047 0056 0041 0068 0041 0097 0155 0158 01	0.127 0.123 0.122 0.121 0.121 0.131 0.	Fractionation (µm) 0.051 0.049 0.059 0.094 0.236 0.210 0.235 0.289 0.351 0.467 0.616 0.810 1.090 1.190 1.439 1.706 2.509 2.473 2.738 2.953 3.267 3.450 3.450 3.603 3.983 4.144 4.247 4.914	

Particle size calibration standards from Whitehouse Scientific

Whitehouse Scientific has been producing precision glass microspheres for calibration for 24 years and is the highest ranking European certification laboratory for primary methods of particle size analysis. Having filled over 1 million bottles using a unique 100 stage spinning riffler system, they are now the world's leading manufacturer of single-shot glass microsphere standards.

The references, nearly all NIST traceable range in size from 0.1µm - 5.0mm and are available as single sizes or broad distribution standards. In addition to calbration, applications include filter testing, space research, nuclear fall-out studies, micro-engineering and precision spacers.

Whether calibrating a particle sizing instrument or any aperture in the range 0.1 - 10,000 microns, Whitehouse Scientific has a standard for every application.

Polydisperse particle standards

-		
Code	Product	Unit
WS-PS180	Polydisperse particle standard - Nominal size: 0.1 - 1 µm	0.01 g
WS-PS181	Polydisperse particle standard - Nominal size: 0.1 - 1 µm	0.02 g
WS-PS190	Polydisperse particle standard - Nominal size: 1 - 10 µm	0.025 g
WS-PS191	Polydisperse particle standard - Nominal size: 1 - 10 µm	0.05 g
WS-PS192	Polydisperse particle standard - Nominal size: 1 - 10 µm	0.10 g
WS-PS193	Polydisperse particle standard - Nominal size: 1 - 10 µm	0.25 g
WS-PS194	Polydisperse particle standard - Nominal size: 1 - 10 µm	0.50 g
WS-PS200	Polydisperse particle standard - Nominal size: 3 - 30 µm	0.025 g
WS-PS201	Polydisperse particle standard - Nominal size: 3 - 30 µm	0.05 g
WS-PS202	Polydisperse particle standard - Nominal size: 3 - 30 µm	0.10 g
WS-PS203	Polydisperse particle standard - Nominal size: 3 - 30 µm	0.25 g
WS-PS204	Polydisperse particle standard - Nominal size: 3 - 30 µm	0.50 g
WS-PS205	Polydisperse particle standard - Nominal size: 3 - 30 µm	1.0 g
WS-PS211	Polydisperse particle standard - Nominal size: 10 - 100 µm	0.05 g
WS-PS212	Polydisperse particle standard - Nominal size: 10 - 100 µm	0.10 g
WS-PS213	Polydisperse particle standard - Nominal size: 10 - 100 µm	0.25 g
WS-PS214	Polydisperse particle standard - Nominal size: 10 - 100 µm	0.50 g
WS-PS215	Polydisperse particle standard - Nominal size: 10 - 100 µm	1.0 g
WS-PS222	Polydisperse particle standard - Nominal size: 50 - 350 µm	0.10 g
WS-PS223	Polydisperse particle standard - Nominal size: 50 - 350 µm	0.25 g
WS-PS224	Polydisperse particle standard - Nominal size: 50 - 350 µm	0.50 g
WS-PS225	Polydisperse particle standard - Nominal size: 50 - 350 µm	1.0 g
WS-PS226	Polydisperse particle standard - Nominal size: 50 - 350 µm	2.5 g
WS-PS227	Polydisperse particle standard - Nominal size: 50 - 350 µm	5.0 g
WS-PS232	Polydisperse particle standard - Nominal size: 150 - 650 µm	0.25 g
WS-PS233	Polydisperse particle standard - Nominal size: 150 - 650 µm	0.50 g
WS-PS234	Polydisperse particle standard - Nominal size: 150 - 650 µm	1.0 g
WS-PS235	Polydisperse particle standard - Nominal size: 150 - 650 µm	2.5 g
WS-PS236	Polydisperse particle standard - Nominal size: 150 - 650 µm	5.0 g
WS-PS237	Polydisperse particle standard - Nominal size: 150 - 650 µm	7.0 g
WS-PS240	Polydisperse particle standard - Nominal size: 500 - 2000 µm	7.0 g
	ble monodisperse particle standards	

WS-MS0009	Monodisperse particle standard (9.18 µm)	0.1 g
WS-MS0012	Monodisperse particle standard (11.58 µm)	0.1 g
WS-MS0023	Monodisperse particle standard (22.81 µm)	0.1 g
WS-MS0026	Monodisperse particle standard (25.6 µm)	0.1 g
WS-MS0028	Monodisperse particle standard (28.41 µm)	0.15 g
WS-MS0031	Monodisperse particle standard (31.33 µm)	0.15 g
WS-MS0036	Monodisperse particle standard (35.65 µm)	0.2 g
WS-MS0037	Monodisperse particle standard (37.36 µm)	0.2 g
WS-MS0038	Monodisperse particle standard (38.38 µm)	0.2 g

Code	Product	Unit
WS-MS0040	Monodisperse particle standard (40.15 µm)	0.2 g
WS-MS0042	Monodisperse particle standard (42.68 µm)	0.2 g
WS-MS0049	Monodisperse particle standard (49.21 µm)	0.2 g
WS-MS0053	Monodisperse particle standard (52.47 µm)	0.2 g
WS-MS0056	Monodisperse particle standard (56.28 µm)	0.2 g
WS-MS0060	Monodisperse particle standard (59.63 µm)	0.2 g
WS-MS0064	Monodisperse particle standard (63.86 µm)	0.2 g
WS-MS0065	Monodisperse particle standard (65.02 µm)	0.2 g
WS-MS0066	Monodisperse particle standard (66.29 µm)	0.2 g
WS-MS0071	Monodisperse particle standard (70.89 µm)	0.2 g
WS-MS0074	Monodisperse particle standard (73.8 µm)	0.2 g
WS-MS0076	Monodisperse particle standard (76.39 µm)	0.2 g
WS-MS0083	Monodisperse particle standard (83.43 µm)	0.2 g
WS-MS0090	Monodisperse particle standard (89.8 µm)	0.2 g
WS-MS0091	Monodisperse particle standard (91.21 µm)	0.2 g
WS-MS0114	Monodisperse particle standard (114.4 µm)	0.3 g
WS-MS0128	Monodisperse particle standard (127.5 µm)	0.3 g
WS-MS0156	Monodisperse particle standard (155.8 µm)	0.3 g
WS-MS0177	Monodisperse particle standard (177 µm)	0.3 g
WS-MS0180	Monodisperse particle standard (180 µm)	0.3 g
WS-MS0193	Monodisperse particle standard (192.8 µm)	0.4 g
WS-MS0197	Monodisperse particle standard (197.3 µm)	0.4 g
WS-MS0201	Monodisperse particle standard (200.9 µm)	0.4 g
WS-MS0210	Monodisperse particle standard (210.6 µm)	0.4 g
WS-MS0225	Monodisperse particle standard (224.8 µm)	0.4 g
WS-MS0236	Monodisperse particle standard (236.2 µm)	0.5 g
WS-MS0259	Monodisperse particle standard (258.6 µm)	0.6 g
WS-MS0269	Monodisperse particle standard (268.5 µm)	0.6 g
WS-MS0292	Monodisperse particle standard (292.5 µm)	0.8 g
WS-MS0298	Monodisperse particle standard (297.9 µm)	0.8 g
WS-MS0305	Monodisperse particle standard (304.6 µm)	0.8 g
WS-MS0315	Monodisperse particle standard (315.3 µm)	1 g
WS-MS0362	Monodisperse particle standard (361.6 µm)	1 g
WS-MS0406	Monodisperse particle standard (405.9 µm)	1.5 g
WS-MS0451	Monodisperse particle standard (451 µm)	2 g
WS-MS0555	Monodisperse particle standard (555 µm)	2.5 g
WS-MS0589	Monodisperse particle standard (589 µm)	2.5 g
Image analys	sis standards	
WS-XX015	Image analysis standard - Calibration range: 50 - 250 µm	50 g
WS-XX025	Image analysis standard - Calibration range: 170 - 710 μm	100 g
WS-XX030	Image analysis standard - Calibration range: 500 - 2000 µm	200 g
WS-XX035	Image analysis standard - Calibration range: 1400 - 5000 µm	500 g

NIST traceable sieve standards

	Product		Unit
WS-SS391	Sieve standard - For sieve size: 20 µm Mesh635	Calibration range18.8 - 23.7 µm	0.8 g
WS-SS392	Sieve standard - For sieve size: 25 µm Mesh500	Calibration range21.7 - 30.2 µm	0.8 g
WS-SS393	Sieve standard - For sieve size: 32 µm Mesh450	Calibration range27.8 - 34.1 μm	1.0 g
WS-SS394	Sieve standard - For sieve size: 36, 38, 40 µm Mesh400	Calibration range	1.0 g
WS-SS395	Sieve standard - For sieve size: 45, 50 µm Mesh325	Calibration range42.0 - 50.8 μm	1.0 g
WS-SS396	Sieve standard - For sieve size: 53, 56 µm Mesh270	Calibration range48.4 - 59.5 μm	1.0 g
WS-SS397	Sieve standard - For sieve size: 63 µm Mesh230	Calibration range56.6 - 70.4 µm	1.0 g
WS-SS398	Sieve standard - For sieve size: 71, 75, 80 µm Mesh200	Calibration range67.1 - 82.8 µm	1.0 g
WS-SS399	Sieve standard - For sieve size: 90 µm Mesh170	Calibration range78.8 - 97.6 µm	1.0 g
WS-SS400	Sieve standard - For sieve size: 100, 106, 112 µn Mesh140	n Calibration range91.4 - 117 μm	1.0 g
WS-SS401	Sieve standard - For sieve size: 125 µm Mesh120	Calibration range	1.0 g
WS-SS402	Sieve standard - For sieve size: 140, 150, 160 µn Mesh100	n Calibration range134 - 167 μm	2.5 g
WS-SS403	Sieve standard - For sieve size: 180 µm Mesh80	Calibration range	2.5 g
WS-SS404	Sieve standard - For sieve size: 200, 212, 224 µn Mesh		2.5 g
WS-SS405	Sieve standard - For sieve size: 250, 280 µm Mesh	Calibration range	2.5 g
WS-SS406	Sieve standard - For sieve size: 300, 315 µm Mesh	Calibration range	2.5 g
WS-SS407	Sieve standard - For sieve size: 355 µm Mesh45	Calibration range	2.5 g
WS-SS408	Sieve standard - For sieve size: 400, 425, 450 µn Mesh		2.5 g
WS-SS409	Sieve standard - For sieve size: 500 µm Mesh	Calibration range	2.5 g
WS-SS410	Sieve standard - For sieve size: 560, 600, 630 µn Mesh	n Calibration range526 - 657 μm	2.5 g
WS-SS411	Sieve standard - For sieve size: 710 µm Mesh25	Calibration range658 - 809 µm	2.5 g
WS-SS412	Sieve standard - For sieve size: 800, 850, 900 µn Mesh	n Calibration range774 - 951 µm	2.5 g
WS-SS413	Sieve standard - For sieve size: 1000 µm Mesh	Calibration range	7.0 g
WS-SS414	Sieve standard - For sieve size: 1120, 1180, 1250 Mesh		10.0 g
WS-SS415	Sieve standard - For sieve size: 1400, 1550 µ Mesh14	m Calibration range1292 - 1609 μm	15.0 g
WS-SS416	Sieve standard - For sieve size: 1600, 1700, 1800 Mesh	- · · · · · · · · · · · · · · · · · · ·	15.0 g
WS-SS417	Sieve standard - For sieve size: 2000 µm Mesh	Calibration range	20.0 g
		· · · · · · · · · · · · · · · · · · ·	

Code	Product	Unit
WS-SS418	Sieve standard - For sieve size: 2240, 2360, 2500 μm Mesh	20.0 g
WS-SS419		25.0 a
WS-35419	Sieve standard - For sieve size: 2800, 3150 μm Mesh	25.0 g
WS-SS420	Sieve standard - For sieve size: 3350, 3550 µm	25.0 g
	Mesh	
General purp	oose glass microspheres	
WS-GP0042	General purpose glass microspheres - Sieve fraction: 38 - 45 µm	100 g
WS-GP0049	General purpose glass microspheres - Sieve fraction: 45 - 53 µm	100 g
WS-GP0058	General purpose glass microspheres - Sieve fraction: 53 - 63 µm	100 g
WS-GP0069	General purpose glass microspheres - Sieve fraction: 63 - 75 µm	100 g
WS-GP0083	General purpose glass microspheres - Sieve fraction: 75 - 90 µm	100 g
WS-GP0098	General purpose glass microspheres - Sieve fraction: 90 - 106 µm	100 g
WS-GP0116	General purpose glass microspheres - Sieve fraction: 106 - 125 µm	200 g
WS-GP0138	General purpose glass microspheres - Sieve fraction: 125 - 150 µm	200 g
WS-GP0165	General purpose glass microspheres - Sieve fraction: 150 - 180 µm	200 g
WS-GP0196	General purpose glass microspheres - Sieve fraction: 180 - 212 µm	200 g
WS-GP0231	General purpose glass microspheres - Sieve fraction: 212 - 250 µm	200 g
WS-GP0275	General purpose glass microspheres - Sieve fraction: 250 - 300 µm	200 g
WS-GP0328	General purpose glass microspheres - Sieve fraction: 300 - 355 µm	200 g
WS-GP0335	General purpose glass microspheres - Sieve fraction: 315 - 355 µm	200 g
WS-GP0375	General purpose glass microspheres - Sieve fraction: 350 - 400 µm	200 g
WS-GP0390	General purpose glass microspheres - Sieve fraction: 355 - 425 µm	200 g
WS-GP0463	General purpose glass microspheres - Sieve fraction: 425 - 500 µm	200 g
WS-GP0475	General purpose glass microspheres - Sieve fraction: 450 - 500 µm	200 g
WS-GP0530	General purpose glass microspheres - Sieve fraction: 500 - 560 µm	200 g
WS-GP0550	General purpose glass microspheres - Sieve fraction: 500 - 600 µm	200 g
WS-GP0580	General purpose glass microspheres - Sieve fraction: 560 - 600 µm	200 g
WS-GP0615	General purpose glass microspheres - Sieve fraction: 600 - 630 µm	200 g
WS-GP0650	General purpose glass microspheres - Sieve fraction: 600 - 710 µm	200 g
WS-GP0780	General purpose glass microspheres - Sieve fraction: 710 - 850 µm	200 g
WS-GP0925	General purpose glass microspheres - Sieve fraction: 850 - 1000 µm	200 g
WS-GP1060	General purpose glass microspheres - Sieve fraction: 1000 - 1120 µm	400 g
WS-GP1090	General purpose glass microspheres - Sieve fraction: 1000 - 1180 µm	400 g
WS-GP1150	General purpose glass microspheres - Sieve fraction: 1120 - 1180 µm	400 g
WS-GP1215	General purpose glass microspheres - Sieve fraction: 1180 - 1250 µm	400 g
WS-GP1325	General purpose glass microspheres - Sieve fraction: 1250 - 1400 µm	400 g
WS-GP1500	General purpose glass microspheres - Sieve fraction: 1400 - 1600 µm	400 g
WS-GP1550	General purpose glass microspheres - Sieve fraction: 1400 - 1700 µm	400 g
WS-GP1650	General purpose glass microspheres - Sieve fraction: 1600 - 1700 µm	400 g
WS-GP1700	General purpose glass microspheres - Sieve fraction: 1600 - 1800 µm	400 g
WS-GP1750	General purpose glass microspheres - Sieve fraction: 1700 - 1800 µm	400 g
WS-GP1900	General purpose glass microspheres - Sieve fraction: 1800 - 2000 µm	400 g
WS-GP2200	General purpose glass microspheres - Sieve fraction: 2000 - 2240 µm	400 g
WS-GP2500	General purpose glass microspheres - Sieve fraction: 2300 - 2700 µm	400 g
WS-GP3000	General purpose glass microspheres - Sieve fraction: 2800 - 3200 µm	400 g
WS-GP3455	General purpose glass microspheres - Sieve fraction: 3360 - 3550 µm	400 g
		400 g 400 g

General purpose basalt microspheres

General purpo	be basar microspheres	
Code	Product	Unit
WS-BM0083	General purpose basalt microspheres - Sieve fraction: 75 - 90 µm	100 g
WS-BM0098	General purpose basalt microspheres - Sieve fraction: 90 - 106 µm	100 g
WS-BM0116	General purpose basalt microspheres - Sieve fraction: 106 - 125 µm	100 g
WS-BM0138	General purpose basalt microspheres - Sieve fraction: 125 - 150 µm	100 g
WS-BM0165	General purpose basalt microspheres - Sieve fraction: 150 - 180 µm	100 g
WS-BM0196	General purpose basalt microspheres - Sieve fraction: 180 - 212 µm	100 g
WS-BM0231	General purpose basalt microspheres - Sieve fraction: 212 - 250 µm	100 g
WS-BM0275	General purpose basalt microspheres - Sieve fraction: 250 - 300 µm	100 g
WS-BM0328	General purpose basalt microspheres - Sieve fraction: 300 - 355 µm	100 g
WS-BM0390	General purpose basalt microspheres - Sieve fraction: 355 - 425 µm	100 g
WS-BM0463	General purpose basalt microspheres - Sieve fraction: 425 - 500 µm	100 g
WS-BM0550	General purpose basalt microspheres - Sieve fraction: 500 - 600 µm	100 g
WS-BM0650	General purpose basalt microspheres - Sieve fraction: 600 - 710 µm	100 g
WS-BM0780	General purpose basalt microspheres - Sieve fraction: 710 - 850 µm	100 g
WS-BM0925	General purpose basalt microspheres - Sieve fraction: 800 - 1000 µm	100 g
WS-BM1090	General purpose basalt microspheres - Sieve fraction: 1000 - 1200 µm	100 g
WS-BM1300	General purpose basalt microspheres - Sieve fraction: 1200 - 1400 µm	100 g
WS-BM1500	General purpose basalt microspheres - Sieve fraction: 1400 - 1600 µm	100 g
WS-BM1700	General purpose basalt microspheres - Sieve fraction: 1600 - 1800 µm	100 g
WS-BM1900	General purpose basalt microspheres - Sieve fraction: 1800 - 2000 µm	100 g
WS-BM2200	General purpose basalt microspheres - Sieve fraction: 2000 - 2400 µm	100 g
Surface area		
BCR-169	alpha-Alumina - Specific surface area (BET) Certified value Specific surface area (BET)0.104 m²/g	60 g
BCR-170	alpha-Alumina - Specific surface area (BET) Certified value Specific surface area (BET)1.05 m ² /g	60 g
BCR-171	Alumina - Specific surface area (BET) Certified value Specific surface area (BET)2.95 m ² /g	50 g
BCR-172	Quartz - Specific surface area (BET) Certified value Specific surface area (BET)2.56 m²/g	10 g
BCR-173	Titania - Specific surface area (BET) Certified value Specific surface area (BET)8.23 m²/g	46 g
BCR-175	Tungsten - Specific surface area (BET) Certified value Specific surface area (BET)0.181 m²/g	200 g
BAMPM 101	Silica - Specific surface area (BET) Certified values Specific surface area (BET)0.177 m ² /g	10 g
BAMPM 102	Alpha alumina - Specific surface area (BET) Certified values Specific surface area (BET)	10 g
BAMPM 103	Alumina type 60 Certified values Specific surface area (BET)	10 g
BAMPM 104	Alumina type 150 Certified values Specific surface area (BET)	10 g

Code	Product	Unit
NIST-1899	Silicon nitride - Specific surface area	4 g
	Intended for use in the calibration of BET instruments used to measure specific surface area (SSA) in the range 0.1 m ² /g to 1000m ² /g.	
	Certified values	
	Specific surface area (BET) multipoint10.67 m ² /g Specific surface area (BET) single point10.52 m ² /g	
NIST-1900	Silicon nitride - Specific surface area	4 g
	Intended for use in the calibration of BET instruments used to measure specific surface area (SSA) in the range 0.1 m ² /g to 1000 m ² /g.	
	Certified values	
	Specific surface area (BET) multipoint2.85 m²/g Specific surface area (BET) single point2.79 m²/g	
Micropore	volume and width	
BCR-704	Faujasite type zeolite	10 g
	Adsorption of argon at the temperature of liquid argon (87K) on a microporous material (faujasite type zeolite) according to DIN 66135-4.	-
BCR-705	Linde type A zeolite	10 g
	Adsorption of argon at the temperature of liquid argon (87 K) on a microporous material (Linde type A zeolite) according to DIN 66135-4.	
NIST-1917	Alumina - Specific pore volume	10 g
	This SRM [®] /CRM jointly developed and certified by NIST and BAM is intended for use in calibrating and monitoring the performance of mercury porosimeters. The SRM [®] /CRM unit consists of a single bottle containing approximately 10 g of alumina beads.	
	Certified properties:	
	 A) Pressure-volume curve (mercury intrusion curve) between 0.1 MPa and 400 MPa B) Diameter-volume curve (cumulative pore volume curve) between 3.7 nm and 14708 nm C) Pore volume values at selected intrusion pressure points; (ii) Values for the pore diameter 	
	Certified pore volume values at selected intrusion pressures and certified pore diameter	
	Property x U 2s Unit	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	x - mean of the laboratory means (certified value) U - expanded uncertainty (coverage factor 2) s - standard deviation of the certified value Note: all certified pore volumes are normalized values V'p = Vp(pHg) - Vp(0.1 MPa)	
NIST-1918	Silica-alumina - Specific pore volume	12 g
		5

This Standard Reference Material® (SRM®) is intended for use in the calibration of mercury porosimeter intrusion analytical instruments. A unit of NIST-1918 consists of one vial containing approximately 12 g of an extruded silica-alumina compound.

Certified values	
Mean Pore Diameter Median Pore Diameter Total Intruded Volume	8.503 ± 0.218 nm

Particle flow

BCR-116

Limestone powders

The flow of powders or granulated materials under the force of gravity affects the design and operation of silos used for their bulk storage. The European Federation of Chemical Engineering (EFCE) therefore developed a test method, based on the Jenike Shear Cell, to determine the shear strength of powders under different compaction and loading conditions. The complexity of this method is such that errors due to poor technique can easily arise. This CRM has therefore been produced with which laboratories can verify both their equipment and experimental technique. It is certified for shear stress as a function of normal applied stress for four different powder compaction stresses.

3.2 kg

Particles and surface properties

Microhardness

Code	Product	Unit
	NIST-1893 - NIST-2830	
	These materials are intended for use in calibrating and checking the performance of microhardnes and may be used in conjunction with ASTM E384.	ss testers
NIST-1893	Bright copper - Hardness (Knoop) Load 0.245, 0.490, 0.981N	each
	Certified value Hardness (nominal)125 kg/mm ²	
NIST-1894A	Bright copper - Hardness (Vickers)	each
	This Standard Reference Material [®] (SRM [®]) is intended primarily for use in calibrating Vickers-type microhardness testers and is certified for mean Vickers hardness values (HV) at loads of 0.245 N, 0.49 N, and 0.98 N (0.025 kgf, 0.050 kgf, and 0.100 kgf, respectively). NIST-1894a consists of a 1.35 cm square test block of electrodeposited bright copper, approximately 1750 µm thick, on an AISI 1010 steel substrate, mounted in a thermosetting epoxy. Five indentations were made on the SRM [®] polished surface for each load. Hardness values are reported in Gigapascal (GPa) and kgf/mm2. The SRM [®] was individually measured and bears a serial number imprinted on the side of the epoxy mount.	
NIST-1895	Bright nickel - Hardness (Knoop) Load 0.245, 0.490, 0.981N	each
	Certified value Hardness (nominal)600 kg/mm ²	
NIST-1896B	Bright nickel - Hardness (Vickers)	each
	Load 0.245, 0.490, 0.981N	
	Certified value Hardness (nominal)600 kg/mm ²	
NIST-1905	Bright nickel - Hardness (Knoop)	each
	Load 2.943 Certified value	
	Hardness (nominal)600 kg/mm ²	
NIST-1906	Bright nickel - Hardness (Knoop) Load 4.905N	each
	Certified value Hardness (nominal)600 kg/mm ²	
NIST-1907	Bright nickel - Hardness (Knoop) Load 9.81N	each
	Certified value Hardness (nominal)600 kg/mm ²	
NIST-1908	Bright nickel - Hardness (Vickers) This Standard Reference Material [®] (SRM [®]) is intended primarily for use in calibrating Vickers-type microhardness testers and is certified for mean Vickers hardness values (HV) at a load of 2.943 N (0.300 kgf). NIST-1908 consists of a 1.35 cm square test block of electrodeposited bright nickel, approximately 750 µm thick, on an AISI 1010 steel substrate, mounted in a thermosetting epoxy. Five indentations were made on the polished surface of the SRM [®] . Hardness value is reported in gigapascal (GPa) and kgf/mm2. The SRM [®] was individually measured and bears a serial number imprinted on the side of the epoxy mount.	each
NIST-1909	Bright nickel - Hardness (Vickers) This Standard Reference Material [®] (SRM [®]) is intended primarily for use in calibrating Vickers-type microhardness testers and is certified for mean Vickers hardness values (HV) at a load of 9.81 N (1.000 kgf). NIST-1909 consists of a 1.35 cm square test block of electrodeposited bright nickel, approximately 750 µm thick, on an AISI 1010 steel substrate, mounted in a thermosetting epoxy. Five indentations were made on the polished surface of the SRM [®] . Hardness value is reported in gigapascal (GPa) and kgf/mm2. The SRM [®] was individually measured and bears a serial number imprinted on the side of the epoxy mount.	each
NIST-2798A	Bright nickel - Hardness (Vickers) This Standard Reference Material (SRM [®]) is intended primarily for use in calibrating Vickers-type microhardness testers and is certified for mean Vickers hardness values (HV) at a load of 4.905 N (0.500 kgf). NIST-2798a consists of a 1.35 cm square test block of electrodeposited bright nickel, approximately 750 µm thick, on an AISI 1010 steel substrate, mounted in a thermosetting epoxy. Five indentations were made on the polished surface of the SRM [®] . Hardness value is reported in gigapascal (GPa) and kgf/mm2. The SRM [®] was individually measured and bears a serial number imprinted on the side of the epoxy mount.	each
NIST-2830	Ceramic silicon nitride - Hardness (Knoop) Load 19.6N Certified value Hardness (nominal)	each

Code	Product	Uni
NIST-2831	Vickers Hardness of Ceramics and Hardmetals	each
	This Standard Reference Material (SRM [®]) is intended for use in the calibration of all hardness and microhardness testing machines whereby a Vickers indentation is made and then measured with a microscope. The SRM has five NIST-made indents in the middle of a polished face certified for the individual diagonal lengths, the average diagonal length, and the average hardness value for indentations made at a load of 9.8 N (1 kgf). A unit of NIST-2831 consists of a 25 mm D × 9.5 mm disk that has a nominal hardness of approximately 15.0 GPa (1530 kgf/mm ²) packaged in a wooden box. Each unit is individually certified and bears a serial number scribed on the opposite (bottom) face of the disk. Vickers hardness is calculated as HV = α P/d ² , where P is the indentation load, d is the average diagonal size [(d1 + d2)/2], and α is the indenter constant, which, for an ideal Vickers indenter is 1.8544. If P is in units of Newton, and d is in units of GPa. In this certificate, older traditional units of hardness expressed as kgf/mm ² are also included in parenthesis for the convenience of users.	
Suface rough	iness	
NIST-2073a	Electroless-nickel coated steel	each
	This Standard Reference Material [®] is certified for roughness average R _a and surface spatial wavelengh, D, and is intended for use as a standard for the calibration of stylus instruments that are used to measure surface roughness.	
	2.4 cm x 3.3 cm Certified values	
	Roughness average R _a 99.099 μm Wavelength D	
NIST-2074	Electroless-nickel coated steel	each
11101 2014	This Standard Reference Material [®] is certified for roughness average R _a and surface spatial wavelengh, D, and is intended for use as a standard for the calibration of stylus instruments that are used to measure surface roughness.	Cuci
	2.4 cm x 3.3 cm	
	Certified values	
	Roughness average R _a 40 μm Wavelength D40 μm	
NIST-2075	Electroless-nickel coated steel This Standard Reference Material [®] is certified for roughness average R _a and surface spatial wavelengh, D, and is intended for use as a standard for the calibration of stylus instruments that are used to measure surface roughness.	each
	2.4 cm x 3.3 cm	
	Certified values Roughness average R _a 800 μm Wavelength D	
		40 . 1
NIST-RM 8457	Ultra high molecular weight polyethylene This Reference Material (RM), is intended for evaluations of cross-linking induced by radiation exposure, such as used to improve wear characteristics. Each unit of NIST-RM 8457 consists of 10 cubes of ultra high molecular weight polyetheylene (UHMWPE) of nominal dimension 0.5 cm. The cubes are sized for measurement of cross- link density by swelling. The material as supplied has not been irradiated, however.	10 cubes
	Reference values Cube dimension Dimension (cm) Surface roughness (µm)	
	Faces normal to bar direction	
	Faces perpendicular to bar direction0.5017 ± 0.006	
Surface tens	ion	
	GUM 11.1 - GUM 11.3	
	Reference materials certified by the Physical Chemistry Division of the Central Office of Measure Warsaw. They are intended for the calibration and checking tensiometers. All standards are support certificate showing value of surface tension with an uncertainty 0.1 mN/m and value of density w uncertainty of 0.1 kg/m ³ . Decimal values are given in the certificate.	olied with a
GUM 11.1	Isooctane Certified value Surface tension	30 mL
GUM 11.2	Benzene Certified value Surface tension	30 mL
GUM 11.3	Glycerol	30 mL
	Certified value	

Particles and surface properties

Depth profiling

	Product	atalum fail		Uni			
BCR-261T	Tantalum pentoxide on tai Certified values	ntaium toil		2x4 foils			
	Areal density of oxygen atoms						
		Certified values [10 ²¹ m ⁻²]	Uncertainty [10 ²¹ m ⁻²]				
	Oxide thickness n	[]					
	30 nm material (nominal)						
	100 nm material (nominal)						
		Certified ratio [dimensionless]	Uncertainty [dimensionless]				
	Oxide thickness ratio		• •				
NIST-2134							
1101-2104	trace levels of arsenic in a silico NIST-2134 is intended for calibr specific set of instrumental comc calibration of working standards substrate that has been ion imp NIST-2134 is certified for the re unit area. Additional noncertified below the surface is provided by The total retained dose of ⁷⁵ As Certified Retained Dose of ⁷⁵ As	al [®] (SRM [®]) is intended for us n matrix by the analytical tech ating the response of a SIMS ditions. It may also be used by of arsenic in silicon. This SR lanted with the isotope ⁷⁵ As at atined dose of 75 As atoms. T d information about the conce / SIMS. atoms was determined by inst s0.09120 µg/	he dose is expressed in units of arsenic mass per ntration of arsenic atoms as a function of depth rumental neutron activation analysis. $cm^2 \pm 0.00035 \ \mu g/cm^2$	each			
	Using a value of 74.9216 g/mol 7.330 x 10 ¹⁴ atoms/cm 2 ± 0.02	for the isotopic mass of $^{\circ}As$, 8 × 10 ¹⁴ atoms/cm ²	the retained dose is equivalent to				
NIST-2135C	Nickel-chromium thin film	- Depth profile		each			
			depth and erosion rates in surface analysis.	000			
	Total thickness						
	Certified values						
	Cr206.3 µg/cm ² Ni						
	Single layer thickness						
	Certified values						
	Cr41.3 µg/cm	² Ni 4	9.4 µg/cm ²				
NIST-2137	Boron implant in silicon - I	Depth profile		each			
	•		and trace element levels in a silicon matrix.				
	B-101.018 x 10 ¹⁵ atoms/cm	2					
Coatings							
	NIST-1359b - NIST-1364b)					
	of organics and nonmagnees of thicknesses electrodeposition	etic inorganic coatings o ted onto low carbon stee re then overplated with a	uitable for calibrating instruments used in the n n steel. They consist of fine grained copper of al substrates having the properties of AISI 1010 thin protective layer of chromium and the tota	varying 0 steel.			
NIST-1359B	Copper and chromium on 45 mm × 45 mm coupons	steel - Coating thicknes	S	set (4)			
NIST-1361B	Copper and chromium on steel - Coating thickness 45 mm × 45 mm coupons						
	45 mm × 45 mm coupons	steer - Coating tricknes		set (4)			
NIST-1362B	45 mm × 45 mm coupons Copper and chromium on	Ŭ	S	set (4)			
NIST-1362B	-	Ŭ	S				
NIST-1362B NIST-1363B	Copper and chromium on	steel - Coating thicknes					
	Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on	steel - Coating thicknes	S	set (4)			
NIST-1363B NIST-1364B NIST-2321	Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Tin-lead alloy on copper Intended for calibrating X-ray flu lead alloy coating on a copper s	steel - Coating thicknes steel - Coating thicknes steel - Coating thicknes orescence equipment. Each o	S	set (4)			
NIST-1363B NIST-1364B	Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Tin-lead alloy on copper Intended for calibrating X-ray flu lead alloy coating on a copper s	steel - Coating thicknes steel - Coating thicknes steel - Coating thicknes orescence equipment. Each o	S s unit, which consists of a plate of an electroplated tin-	set (4) set (4) set (4)			
NIST-1363B NIST-1364B NIST-2321	Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Tin-lead alloy on copper Intended for calibrating X-ray flu lead alloy coating on a copper s	steel - Coating thicknes steel - Coating thicknes steel - Coating thicknes orescence equipment. Each o	S s unit, which consists of a plate of an electroplated tin-	set (4) set (4) set (4)			
NIST-1363B NIST-1364B NIST-2321 Abrasive we	Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Copper and chromium on 45 mm × 45 mm coupons Tin-lead alloy on copper Intended for calibrating X-ray flu lead alloy coating on a copper s	steel - Coating thicknes steel - Coating thicknes steel - Coating thicknes orescence equipment. Each o	S s unit, which consists of a plate of an electroplated tin-	set (4) set (4) set (4) each			

Optical properties

Molecular absorption and luminescence

Code	Product				
ERM-FB011	This certified reference material is intended for use in the verification and calibration of the absorbance scales of ultraviolet-visible absorption spectrometers. Certified values				
	3 standard + 1 blank UV-visible absorbance at four wavelengths (299.4, 395.0, 512.5 and 719.0 nm) at a 1 nm bandwidth.				
ERM-FB012	IR wavelength standard - Polystyrene in hexane This certified reference material is intended for use in the verification and calibration of infra-red spectrometers, within the range of spectral bandwidths quoted Certified values IR wavelength positions of four peaks (3026.0, 1601.1, 1028.8 and 698.0 cm ⁻¹).				
ERM-FB020	UV-Visible wavelength standard for HPLC detectors - Holmium/neodymium oxides solution The certified reference material is intended for use in the verification and calibration of the wavelength scale of ultra-violet/visible HPLC detectors. Certified values UV/visible wavelength location of 7 peaks in the spectral range 241 to 797 nm at four spectral bandwidths (1, 4, 7 and 10 nm).				
ERM-FB021	UV-Visible absorbance standard for HPLC detectors - Sodium nitrate/cobalt chloride/nickel chloride solution This certified reference material is intended for checking the linearity of the absorbance scales of UV/Visible HPLC detectors Certified values 7 standard + 1 blank UV/visible absorbance for four wavelengths (299, 395, 512 and 719 nm) at 4 bandwidths (1, 4, 7, and 10 nm).				
NIST-930E	Glass filters Visible transmittance at 5 wavelengths (440.0, 465.0, 546.1 590.0 and 635.0 nm).				
NIST-931G	Liquid filters UV-visible absorbance at 4 wavelengths (302, 395, 512 and 678 nm). Liquid Filter Nominal Wavelength (nm) 302 395 512 678 Level I 0.2925 ± 0.0016 0.3108 ± 0.0017 0.3011 ± 0.0017 0.1169 ± 0.0012 Level II 0.5969 ± 0.0028 0.6223 ± 0.0029 0.5917 ± 0.0029 0.2344 ± 0.0018 Level III 0.9668 ± 0.0043 0.9328 ± 0.0042 0.8969 ± 0.0042 0.3517 ± 0.0024	set (12)			
NIST-935A	Potassium dichromate UV absorbance at 5 wavelengths (235, 257, 313, 345, and 350 nm).	15 g			
NIST-936A	Quinine sulphate dihydrate For use in the evaluation of methods and the calibration of fluorescence spectrometers. Certified for the relative molecular emission spectrum, E (I), in radiometric units for a solution of 1.28 x 10 ⁻⁶ mol/L quinine sulphate dihydrate in 0.105 mol/L perchloric acid using an excitation wavelength of 347.5 nm. The values of the molecular emission spectrum are certified at 5 nm wavelength intervals from 375 nm to 675 nm.				
GUM 9D.1	Estrofol film film - Wavenumber standard for infrared range This reference material from the Central Office of Measures (Poland) is intended for use in the calibration of the wave number scale of spectrophotometers in the infrared (IR) spectral region from 400 cm ⁻¹ to 4000 cm ⁻¹ (21 peaks). GUM 9.D1 consists of two cards made of transparent poly(ethylene terephtalate) film 6 mm and 50 mm thick, in holders.				
NIST-1921B	Polystyrene film - IR transmission wavelength This Standard Reference Material [®] (SRM [®]) is intended primarily for use in calibrating the wavelength (wavenumber) scale of spectrophotometers in the infrared (IR) spectral region from 3.2 μm to 18.5 μm (540 cm-1 to 3125 cm-1). SRM 192Ib is a matt finish polystyrene film approximately 38 μm thick with a 25 mm diameter exposed area, centered 38 mm from the bottom of a cardboard holder, which is 5 cm × 11 cm × 0.2 cm in size.				
NIST-2032	Heterochromatic stray radiation energy standard for UV Spectrophotometry Potassium iodide for use in the assessment of heterochromatic stray radiation energy (stray light) below 260 nm UV absorbance at 8 wavelengths (240, 245, 250, 255, 260, 265, 270 and 275 nm).	25 g			
NIST-2940	UV absorbance at 8 wavelengths (240, 245, 250, 255, 260, 265, 270 and 275 nm). Relative intensity correction standard for fluorescence spectroscopy (Orange emission) 412 nm This Standard Reference Material [®] (SRM [®]) is intended for use for the evaluation and calibration of the relative spectral responsivity of steady-state fluorescence spectrometers with a continuous excitation source and for determining the day-to-day or instrument-to-instrument intensity variations of a single or similar fluorescence instrument(s), respectively. This SRM [®] is certified for the relative, corrected emission spectrum, E, in relative power units from emission wavelengths $\lambda_{EM} = 500$ nm to 800 nm at 1 nm wavelength intervals at a fixed excitation wavelength (λ_{EX}) of 412 nm.				

Optical properties

Code	Product	Unit	
NIST-2941	Relative intensity correction standard for fluorescence spectroscopy (Green emission) 427 nm	Cuv (1)	
	This Standard Reference Material [®] (SRM [®]) is intended for use for the evaluation and calibration of the relative spectral responsivity of steady-state fluorescence spectrometers with a continuous excitation source and for determining the day-to-day or instrument-to-instrument intensity variations of a single or similar fluorescence instrument(s), respectively. This SRM [®] is certified for the relative, corrected emission spectrum, E, in relative power units from emission wavelengths $\lambda_{EM} = 450$ nm to 650 nm at 1 nm wavelength intervals at a fixed excitation wavelength (λ_{EX}) of 427 nm.		
NIST-2035	Relative intensity correction standard for fluorescence spectroscopy (Green emission) 427 nm This Standard Reference Material [®] (SRM [®]) is intended for use for the evaluation and calibration of the relative spectral responsivity of steady-state fluorescence spectrometers with a continuous excitation source and for determining the day-6-day or instrument-to-instrument intensity variations of a single or sinilar fluorescence instruments), respectively. This SRM [®] is conflicted for the relative, corrected emission spectrum, E. in relative power units from emission wavelength standard Near infrared transmission wavelength standard Main infrared transmission wavelength standard Near infrared wavelength/reflection standard This Standard Reference Material (SRM [®]) is a certified transmission wavelength intervest (NR) spectrometers powerlength of the effectione many approximately is a serified standard (NR) spectrometer powerlength/or serification and certered wavelength/reflection standard This Standard Reference Material (SRM [®]) is a certified transmission from 975 mm to 1946 nm (air wavelength). In addition, it is certified to the 195 Nm to 1946 nm (air wavelength). In addition, it is certified to the 195 Nm to 1946 nm (air wavelength). In addition, it is certified to the 195 Nm To 1946 nm (air wavelength). In addition, it is certified to the 195 Nm To 1946 nm (air wavelength). In addition, it is certified to the location of seven absorbance bands (IOC) in the spectral region from 0300 cm ⁻¹ to 1300 cm ⁻¹ is 130 cm ⁻¹ at 20m ⁻¹ seven absorbance bands (IOC) in the spectral region for 03000 cm ⁻¹ to 1300 cm ⁺¹ is 300 cm ⁺¹ is a single-mode optical-flore-coupled absorbance optical flore is a gass pohsicial to move the sange seventabilitin a daventability of the sange seven bands and seven abso		
NIST-2036	This Standard Reference Material (SRM [®]) is a certified transfer standard intended for the verification and calibration of the wavelength/wavenumber scale of Near-Infrared (NIR) spectrometers operating in diffuse reflectance mode. NIST-2036 is a glass physically contacted with a piece of sintered polytetrafluoroethylene (PTFE). The combination of the rare earth oxide glass with a nearly ideal diffuse reflector provides reflection-absorption bands that range from approximately 15 % R to 40 % R. NIST-2036 is certified for the 10 % band fraction centroid of seven bands spanning the spectral region from 975 nm to 1946 nm (air wavelength). In addition, it is certified for the 10 % band fraction centroid location of the same seven bands in the spectral	1 filter	
NIST-2065	This Standard Reference Material (SRM [®]) is a certified standard intended for the verification and calibration of the wavelength/wavenumber scale of ultraviolet (UV)-Visible-Near-Infrared (NIR) spectrometers operating in transmission mode. NIST-2065 is certified for the location of seven absorbance bands (COG) in the spectral region from 10300 cm ⁻¹ to 5130 cm ⁻¹ at 4 cm ⁻¹ resultion. NIST-2065 is a glass consisting of a combination of	each	
NIST-2517A	Intended for wavelength calibration in the spectral region of 1510 nm to 1540 nm. NIST-2517a is a single-mode optical-fibre-coupled absorption cell containing acetylene (${}^{12}C_2H_2$) gas at a pressure of 6.7 kPa (50 Torr).	1 cell	
NIST-2241	NIST-2241 is a chromium-doped (0.02 mol % Cr ₂ O ₃) sodium borosilicate matrix glass. One unit of this Standard Reference Material [®] consists of a glass slide that is approximately 10.7 mm in width × 30.4 mm in length × 2.0 mm in thickness, with one surface optically polished and the opposite surface ground to a frosted finish using a 400 grit polish. This Standard Reference Material [®] (SRM [®]) is a certified spectroscopic standard for the correction of the relative intensity of Raman spectra obtained with instruments employing 785 nm laser excitation. NIST-2241 consists of an optical glass that emits a broadband luminescence spectrum when excited with 785 nm laser radiation. The relative spectral intensity of the glass luminescence has been determined through the use of a white-light, uniform-source, integrating sphere that has been calibrated for its irradiance at NIST. The shape of the luminescence spectrum of this glass is described by a polynomial expression that relates the relative spectral intensity-response correction that is unique to each Raman system. The resulting instrument-intensity-response correction may then be used to obtain Raman spectra that are instrument independent. This SRM [®] is intended for use in measurements over the range of 20 °C to 25 °C and with Raman systems that employ laser excitation at 785 nm. It may also be used for Raman excitation with lasers that range	each	
NIST-2242	NIST-2242 is a certified spectroscopic standard for the correction of the relative intensity of Raman spectra obtained with instruments employing 532 nm laser excitation. It consists of an optical glass that emits a broadband luminescence spectrum when excited with 532 nm laser radiation. The relative spectral intensity of the glass luminescence has been determined through the use of a white-light, uniform-source, integrating sphere that has been calibrated for its irradiance at NIST. The shape of the luminescence spectrum of this glass is described by a polynomial expression that relates the relative spectral intensity to the wavenumber (cm ⁻¹) expressed as the Raman shift from the excitation wavelength of 532 nm. This polynomial, together with a measurement of the luminescence spectrum of the standard, can be used to determine the spectral intensity-response correction that is unique to each Raman system. The resulting instrument-intensity-response correction may then be used to obtain Raman spectra that are instrument independent. This Standard Reference Material (SRM [®]) is intended for	each	
NIST-2243	This Standard Reference Material (SRM [®]) is a certified spectroscopic standard for the correction of the relative intensity of Raman spectra obtained with instruments employing either 488 nm or 514.5 nm laser excitation. NIST-2243 consists of an optical glass that emits a broadband luminescence spectrum when excited with either of	each	

Starna optical reference materials

Starna[®] optical reference materials produced by Optiglass are now available from LGC Promochem. Optiglass was one of the first reference material producers in the UK to receive accreditation to ISO guide 34. The company has over 30 years experience in the development and production of liquid-filled, heat sealed quartz cells with good long term stability and the optical properties needed to evaluate performance of UV-visible spectrophotometers. The range also includes robust solid glass filter materials for both absorbance and wavelength measurements. These certified reference materials (CRM) for the validation of wavelength accuracy, absorbance accuracy, stray light and resolution in the UV and visible regions, can be used in analytical, clinical and research laboratories. All of the Starna[®] CRMs are traceable to NIST primary standards. Brief descriptions of the types of products available are given below with more detailed product descriptions in the pages that follow.

Absorbance / transmission

Potassium dichromate - UV absorbance and linearity

	The use of potassium dichromate solvated in perchloric acid is an established and recognised method for the validation of the absorbance scale of UV and visible spectrophotometers. Starna [®] provides sets of certified sealed cells covering absorbance values from 0.2 to 3.0 over the wavelength range from 235nm to 350nm. For the far UV, nicotinic acid is the recognised standard and covers from 210nm to 270nm.	
Code	Product	Unit
STRM-0204060810	Potassium dichromate - UV absorbance and linearity	set
	Set of 6 cells Each set consists of one blank (0.001M perchloric acid) and five concentrations, with nominal values of 20 mg/L, 40 mg/L, 60 mg/L, 80 mg/L, and 100 mg/L.	
STRM-0204060810- R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-02040608	Potassium dichromate - UV absorbance and linearity	set
	Set of 5 sets Each set consists of one blank (0.001M perchloric acid) and four concentrations, with nominal values of 20 mg/L, 40 mg/L, 60 mg/L and 80 mg/L.	
STRM-02040608-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-020406	Potassium dichromate - UV absorbance and linearity	set
	Set of 4 cells Each set consists of one blank (0.001M perchloric acid) and three concentrations, with nominal values of 20 mg/L, 40 mg/L and 60 mg/L.	
STRM-020406-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-0204	Potassium dichromate - UV absorbance and linearity	set
	Set of 3 cells Each set consists of one blank (0.001M perchloric acid) and two concentrations, with nominal values of 20 mg/L and 40 mg/L.	
STRM-0204-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-02	Potassium dichromate - UV absorbance and linearity Set of 2 cells Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 20 mg/L.	set
STRM-02-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-04	Potassium dichromate - UV absorbance and linearity	set
	Set of 2 cells Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 40 mg/L.	
STRM-04-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells	set
	Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
STRM-06-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-08	Potassium dichromate - UV absorbance and linearity Set of 2 cells	set
	Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 80 mg/L.	
STRM-08-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-10	Potassium dichromate - UV absorbance and linearity	set
	Set of 2 cells Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 100 mg/L.	
STRM-10-R	Recertification: Potassium dichromate - UV absorbance and linearity	set
STRM-60	Potassium dichromate - UV absorbance and linearity Set of 2 cells	set
	Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 600 mg/L.	
STRM-60-R	Recertification: Potassium dichromate - UV absorbance and linearity	set

Neutral density filter - Visible absorbance and linearity

Schott NG-type glasses are used for the validation of the absorbance scale and linearity of spectrophotometers in the visible region. Starna[®] neutral density filters are available in sets covering nominal transmission values from from 0.1% to 90%.

Code	Product	Unit
STRM-D1D39N	Neutral density filter - Visible absorbance and linearity	set
	Set of 3 glass filters and a blank holder Consists of one blank holder and three filters with nominal values of 0.1 %T, 0.3 %T, and 90 %T.	
STRM-D1D39N-R	Recertification: Neutral density filter - Visible absorbance and linearity	set
STRM-1N2N3N	Neutral density filter - Visible absorbance and linearity	set
	Set of 3 glass filters and a blank holder Consists of one blank holder and three filters with nominal values of 10 %T, 20 %T, and 30 %T.	
STRM-1N2N3N-R	Recertification: Neutral density filter - Visible absorbance and linearity	set
STRM-N1N35N	Neutral density filter - Visible absorbance and linearity Set of 3 glass filters and a blank holder	set
	Consists of one blank holder and three filters with nominal values of 1 %T, 3 %T, and 50 %T.	
STRM-N1N35N-R	Recertification: Neutral density filter - Visible absorbance and linearity	set
STRM-5N	Neutral density filter - Visible absorbance and linearity Set of 1 glass filter and a blank holder Consists of one blank holder and one filter with a nominal value 50 %T.	set
STRM-5N-R	Recertification: Neutral density filter - Visible absorbance and linearity	set
	· · ·	301
Far UV Absor	pance/transmission	
STRM-1A2A3A4A	Nicotinic acid - UV absorbance and linearity Set of 5 cells	set
	Each set consists of one blank (0.1M hydrochloric acid) and four increasing concentrations, with nominal values of 6 mg/L, 12 mg/L, 18 mg/L and 24 mg/L.	
STRM-1A2A3A4A-I	R Recertification: Nicotinic acid - UV absorbance and linearity	set
Wavelength		
	Starna [®] sealed liquid references are available covering all wavelengths from the far UV to the visible. For the UV and visible, rare earth oxides like holmium oxide, didymium (a mixture of neodymium and praseodymium) and samarium solvated in perchloric acid are well recognised as suitable wavelength references.	
STRM-HL	Holmium oxide - UV and visible wavelength	1 cell
	Description: Holmium oxide (4% m/v) in 10% v/v perchloric acid. Primary usage: Assessment of wavelength scale accuracy in both UV and visible regions. Useable range: 240 nm to 650 nm, instruments with spectral bandwidth of less than 3 nm. Physical configuration: Far UV quartz cells that have been permanently heat sealed.	
	Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
STRM-HL-R	Recertification: Holmium oxide - UV and visible wavelength	1 cell
STRM-DL	Didymium (neodymium & praesodymium) - UV and visible wavelength	1 cell
	Description: Didymium (neodymium praesodymium) in perchloric acid. Primary usage: Assessment of wavelength scale accuracy in both UV and visible regions. Useable range: 290 nm to 870 nm, instruments with spectral bandwidth of less than 5 nm. Physical configuration: Far UV quartz cells that have been permanently heat sealed.	
	Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
STRM-DL-R	Recertification: Didymium (neodymium & praesodymium) - UV and visible wavelength	1 cell
STRM-SL	Samarium - UV and visible wavelength	1 cell
	Description: Samarium (III) oxide in perchloric acid. Primary usage: Assessment of wavelength scale accuracy in both UV and visible regions. Useable range: 230 nm to 560 nm, instruments with spectral bandwidth of less than 5 nm. Physical configuration: Far UV quartz cells that have been permanently heat sealed.	
	Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
STRM-SL-R	Recertification: Samarium - UV and visible wavelength	1 cell

Code	Product	Uni
STRM-HG	Holmium glass filter - UV and visible wavelength	1 filte
	Description: Holmium glass filter. Primary usage: Assessment of wavelength scale accuracy in the UV and visible regions.	
	Useable range: 270 nm to 640 nm, instruments with spectral bandwidth of less than 10 nm.	
	Physical configuration: Glass filters 'stress free' mounted in anodised aluminium holder. Consists of one filter, 'stress free' mounted in a proprietary NIST design, with certified peak at spectral bandwidth	
	values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm, and 3.00 nm.	
STRM-HG-R	Recertification: Holmium glass filter - UV and visible wavelength	1 filte
STRM-DG	Didymium glass - UV wavelength	1 filte
	Description: Didymium glass filter. Primary usage: Assessment of wavelength scale accuracy in the visible/near infrared region. Useable range: 430 nm to 890 nm, instruments with spectral bandwidth of less than 10 nm. Physical configuration: Glass filters 'stress free' mounted in anodised aluminium holder.	
	Consists of one filter, "stress free" mounted in a proprietary NIST design, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm, and 3.00 nm.	
STRM-DG-R	Recertification: Didymium glass - UV wavelength	1 filte
Far UV wave	length	
STRM-RE	Rare earth - UV and visible wavelength	1 cel
	Description: Rare earth oxide in dilute sulphuric acid.	1 001
	Primary Usage: Assessment of wavelength scale accuracy in the UV region. Useable range: 200nm to 300nm, instruments with spectral bandwidth of less than 5nm.	
	Physical Configuration: Far UV quartz cells that have been permanently heat sealed. Consists of one sealed cell, with certified peak at spectral bandpass values of 0.1 nm, 0.2 nm, 0.5 nm, 1.0 nm, 1.5	
	nm, 2.0 nm and 3.0 nm.	
STRM-RE-R	Recertification: Rare earth - UV and visible wavelength	1 cel
Stray light		
	Inorganic cut-off filters – UV stray light	
	This is a subtle source of error in UV and visible spectrophotometry. A variety of materials is available for measuring this parameter at several different wavelengths in the form of inorganic cut-off filters. They are designed with sharp cut-offs in transmissions at specified wavelengths which will enable any stray light to be measured.	
	Description: Materials with sharp cut-offs in transmission at specified wavelengths.	
	Primary usage: Detection of stray light in the UV region.	
	Useable range: 200 nm to 260 nm, depending on the material.	
	Physical configuration: Far UV quartz cells that have been permanently heat sealed.	
STRM-AC	Inorganic cut-off filter (acetone) - UV stray light (cut-off at 326 nm)	se
STRM-AC-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 326 nm)	se
STRM-KI	Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	se
STRM-KI-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 260 nm)	se
STRM-LC	Inorganic cut-off filter (lithium carbonate; saturated aqueous) - UV stray light (cut-off at 227 nm)	se
STRM-LC-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 227 nm)	se
STRM-KC	Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut-off at 200 nm)	se
STRM-KC-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 200 nm)	se
STRM-SC	Inorganic cut-off filter (sodium chloride; 1% aqueous) - UV stray light (cut-off at 205 nm)	se
STRM-SC-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 205 nm)	se
STRM-SI	Inorganic cut-off filter (sodium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	se
STRM-SI-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 260 nm)	se
STRM-SN	Inorganic cut-off filter (sodium nitrite; 5% aqueous) - UV stray light (cut-off at 390 nm)	se
STRM-SN-R	Recertification: Inorganic cut-off filter - UV stray light (cut-off at 390 nm)	se

Resolution

Code	Product		Unit
Code STRM-TX	considera with gratii the slit an the resolu vapour or validate th be supplie helps use Toluene i Description Primary usa Useable rar	absorbance and wavelength measurements can only be achieved if due ation is given to the resolution of the monochromator in use. In modern instruments ing monochromators, the resolution relates directly to the slit chosen. The smaller ad its associated spectral bandwidth, the greater the resolution. Simple checks on ution power of a spectrophotometer with Starna [®] resolution CRMs such as benzene to toluene in hexane will provide useful references. Benzene vapour is used to he resolution of instruments with bandpass less than 1nm. Even this material can ed heat sealed into a quartz cell. An alternative liquid reference, toluene in hexane, ers to meet the recommendations of the current European Pharmacopoeia.	Unit
	This formula maximum a Ratio table: SBW (nm):	0.5 1.0 1.5 2.0 3.0	
STRM-TX-R	Ratio: Recertific	2.5 2.1 1.6 1.4 1.0 ation: Toluene in hexane - resolution	set
STRM-BZ	Benzene Description Primary usa Useable rar Physical co At spectral characterist spectral bar	Vapour : 0.1 mL benzene in the vapour state. age: Determination of spectral bandwidth in the UV region. nge: 230 nm to 270 nm, instruments with a spectral bandwidth of less than 1 nm. nfiguration: Far UV quartz cells that have been permanently heat sealed. bandwidths less than 1 nm, the benzene vapour spectrum provides a useful reference that has ic features that may or may not be displayed – dependent upon the current spectrophotometer ndwidth. Benzene vapour will not work well with a photodiode array spectrophotometer as this	1 cell
STRM-BZ-R		type does not measure a continuum and the peaks will not be resolved well enough to be useable. ation: Benzene vapour	1 cell
Sets			
	easier, ar	ied reference material sets have been assembled to make your verification task nd meet specific regulatory requirements. n, set prices do offer price savings over the purchase of individual certified reference ma	aterials.
STRM-06HL) + STRM-HL	set
	STRM-06 STRM-HL	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L. Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
STRM-06HL-R	Recertific	ation: STRM-06 + STRM-HL	set
STRM-06DLKI	STRM-06	6 + STRM-DL + STRM-KI	set
	STRM-06 STRM-DL STRM-KI	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L. Didymium (neodymium & praesodymium) - UV and visible wavelength Didymium (neodymium praesodymium) in perchloric acid Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	
STRM-06DLKI-R	Recertific	ation: STRM-06 + STRM-DL + STRM-KI	set
STRM-06HLKI		S + STRM-HL + STRM-KI	set
	STRM-06 STRM-HL STRM-KI	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L. Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at	
	Dese ill	260 nm)	
STRM-06HLKI-R	R Recertification: STRM-06 + STRM-HL + STRM-KI		set

Code	Product		Unit
STRM-06HLSC	STRM-06	+ STRM-HL + STRM-SC	set
	STRM-06 STRM-HL	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L. Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10	
	STRM-SC	v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (sodium chloride; 1% aqueous) - UV stray light (cut-off at 205 nm)	
STRM-06HLSC-R	Recertifica	ation: STRM-06 + STRM-HL + STRM-SC	set
STRM-06HLKIBZ	STRM-06	+ STRM-HL + STRM-KI + STRM-BZ	set
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
	STRM-HL	Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of	
	STRM-KI	0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	
	STRM-BZ	Benzene vapour (0.1 mL benzene in the vapour state)	
STRM-06HLKIBZ-R	Recertifica	ation: STRM-06 + STRM-HL + STRM-KI + STRM-BZ	set
STRM-06HLKIKC	STRM-06	+ STRM-HL + STRM-KI + STRM-KC	set
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a	
	STRM-HL	solution with a nominal values of 60 mg/L. Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10%	
		v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of	
	STRM-KI	0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	
	STRM-KC	Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut off at 200 nm)	
STRM-06HLKIKC-R	Recertifica	ation: STRM-06 + STRM-HL + STRM-KI + STRM-KC	set
STRM-06KIKCTX		+ STRM-KI + STRM-KC + STRM-TX	set
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
	STRM-KI	Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	
	STRM-KC	Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut- off at 200 nm)	
	STRM-TX	Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM-06KIKCTX-R	Recertifica	ation: STRM-06 + STRM-KI + STRM-KC + STRM-TX	set
STRM-06HLKITX	STRM-06	+ STRM-HL + STRM-KI + STRM-TX	set
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
	STRM-HL	Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of	
	STRM-KI	0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium iodide; 1% aqueous) - UV stray light (cut-off at	
	STRM-TX	260 nm) Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM-06HLKITX-R	Recertifica	ation: STRM-06 + STRM-HL + STRM-KI + STRM-TX	set
STRM-06HLKCBZ	STRM-06	+ STRM-HL + STRM-KC + STRM-BZ	set
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
	STRM-HL	Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) consists of one sealed cell, with certified peak at spectral bandwidth values of	
	STRM-KC	0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium chloride: 1.2% aqueous) - UV stray light (cut-	
		off at 200 nm)	
	STRM-BZ	Benzene vapour (0.1 mL benzene in the vapour state)	set
STRM-06HLKCBZ-R	Recertification: STRM-06 + STRM-HL + STRM-KC + STRM-BZ		

Optical properties

Code	Product		Unit
STRM-06SLLCBZ		6 + STRM-SL + STRM-LC + STRM-BZ	set
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
	STRM-SL	Samarium - UV and visible wavelength (Samarium (III) oxide in perchloric acid) consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
	STRM-LC STRM-BZ	Inorganic cut-off filter (lithium carbonate; saturated aqueous) - UV stray light (cut off at 227 nm) Benzene vapour (0.1 mL benzene in the vapour state)	
STRM-06SLLCBZ-R	Recertific	ation: STRM-06 + STRM-SL + STRM-LC + STRM-BZ	set
STRM-06HLSLKC	STRM-06) + STRM-HL+ STRM-SL + STRM-KC	set
	STRM-06	Potassium dichromate - UV absorbance and linearity	
		Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
	STRM-HL	Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of	
	STRM-SL	0.10 nm,0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Samarium - UV and visible wavelength (Samarium (III) oxide in perchloric acid)	
		Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
	STRM-KC	Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut- off at 200 nm)	
STRM-06HLSLKC-R	Recertific	ation: STRM-06 + STRM-HL+ STRM-SL + STRM-KC	set
STRM-06HLKCSITX		e absorbance instrument spec. kit	set
	Each set co STRM-06	onsists on STRM-06 + STRM-HL + STRM-KC + STRM-SI + STRM-TX Potassium dichromate - UV absorbance and linearity	
	STRM-00	Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
		Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one sealed cell, with certified peak at spectral bandwidth values of	
	STRM-KC	0.10 nm,0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut- off at 200 nm)	
	STRM-SI	Inorganic cut-off filter (sodium iodide; 1% aqueous) - UV stray light (cut-off at 260 nm)	
	STRM-TX	Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM- 06HLKCSITX-R	Recertific	ation: UV single absorbance instrument spec. kit	set
STRM-	UV and v	isible instrument spec. kit	set
0660HLKCSITX		onsists on STRM-06 + STRM-60 + STRM-HL + STRM-KC + STRM-SI + STRM-TX	
		Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L.	
		Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a	
	STRM-HL	solution with a nominal value of 600 mg/L Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid)	
		Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut-off	
		at 200 nm) Inorganic cut-off filters (sodium iodide; 1% aqueous) - UV stray light (cut-off at	
		260 nm) Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM- 0660HLKCSITX-R		cation: UV and visible instrument spec. kit	set
STRM-06HLKCTX	Pharmaco	opoeia kit	set
OTTAM CONERCONX		onsists on STRM-06 + STRM-HL + STRM-KC + STRM-TX	001
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a	
	STRM-HL	solution with a nominal value of 60 mg/L. Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid) Consists of one scaled cell, with certified peak at spectral bandwidth values of	
	STRM-KC	Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm, 0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut-off of 200 nm)	
	STRM-TX	off at 200 nm) Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM-06HLKCTX-R	Recertific	ation: Pharmacopoeia kit	set

Code	Product		Unit
STRM-		recert. of pharmacopoeia kit (STRM-06HLKCTX) to E.P. 5.2	set
0660HLKCTX/R/UG	In version 5.2 of the Euro. Pharm., in section 2.2.25, they added an additional Absorbance verification using a 600 mg/l solution of potassium dichromate at 430 nm. The upgrade price adds this 600 mg/L reference to the existing Euro. Pharm. set, and re-certifies all the existing materials.		
STRM-0660HLKCT>		narmacopoeia kit nsists on STRM-06 + STRM-60 + STRM-HL + STRM-KC + STRM-TX	set
	STRM-06	Potassium dichromate - UV absorbance and linearity	
	STRM-60	Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 60 mg/L. Potassium dichromate - UV absorbance and linearity	
		Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a	
	STRM-HL	solution with a nominal value of 600 mg/L Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid)	
		Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm,0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm.	
	STRM-KC	Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut- off at 200 nm)	
	STRM-TX	Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM-	Recertifica	ation: E.P. 5.2 Pharmacopoeia kit	set
0660HLKCTX-R			
STRM-	Far UV co	ombination kit	set
1A2A3A4ARE	Each set cor	nsists on STRM-1A2A3A4A + STRM-RE	
STRM- 1A2A3A4ARE-R	Recertifica	ation: Far UV combination kit	set
STRM-	Single Box	x 3-point linearity full spec. kit (9 cells)	set
020610HLKCTX	Each set cor	nsists on STRM-02 + STRM-06 + STRM-10 + STRM-HL + STRM-KC + STRM-TX	
	STRM-02	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a solution with a nominal value of 20 mg/L.	
	STRM-06	Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a	
	STRM-10	solution with a nominal value of 60 mg/L. Potassium dichromate - UV absorbance and linearity Set of 2 cells: Each set consists of one blank (0.001M perchloric acid) and a	
	STRM-HL	solution with a nominal values of 100 mg/L. Holmium oxide - UV and visible wavelength (Holmium oxide (4% m/v) in 10% v/v perchloric acid)	
	STRM-KC	Consists of one sealed cell, with certified peak at spectral bandwidth values of 0.10 nm,0.25 nm, 0.50 nm, 1.00 nm, 1.50 nm, 2.00 nm and 3.00 nm. Inorganic cut-off filter (potassium chloride; 1.2% aqueous) - UV stray light (cut-	
	STRM-TX	off at 200 nm) Toluene in hexane - Resolution (0.020% v/v solution of toluene in hexane)	
STRM-		ation: Single Box 3-point linearity full spec. kit (9 cells)	set
020610HLKCTX-R			
Refractive inde	x		
ERM-BD011	Orange ju	ice	3 mL
		d reference material is intended for use in the development, validation or quality control of analytical the determination of degrees Brix or Refractive Index of sugar solutions and food extracts.	
		x 1.26 Refractive index 1.3348	
ERM-BD012	Orange ju		3 mL
	This certified	d reference material is intended for use in the development, validation or quality control of analytical the determination of degrees Brix or Refractive Index of sugar solutions and food extracts.	5 IIIE
	Certified value		
	Degrees Briz	x 12.72 Refractive index 1.3521	
ERM-BD013	Orange ju		3 mL
		d reference material is intended for use in the development, validation or quality control of analytical the determination of degrees Brix or Refractive Index of sugar solutions and food extracts. ues	
		x	
ERM-BD014	Orange ju	ice	3 mL
	This certified	d reference material is intended for use in the development, validation or quality control of analytical the determination of degrees Brix or Refractive Index of sugar solutions and food extracts.	52
	Certified value	ues	

Optical properties

ERM-BD015	Orange juice	3 mL	
	This certified reference material is intended for use in the development, validation or quality control of analytical methods for the determination of degrees Brix or Refractive Index of sugar solutions and food extracts. Certified values		
	Degrees Brix		
NIST-1822A	Refractive index standard	plate	
	Certified values	•	
	Vacuum Wavelength (nm) Refractive Index (n) at 22 °C at 22 °C at 22 °C		
	480.1254 1.526132 ± 0.000016 546.2260 1.521629 ± 0.000016 501.7077 1.524468 ± 0.000016 587.7254 1.519535 ± 0.000016 508.7240 1.523971 ± 0.000016 644.0250 1.517277 ± 0.000016		
NIST-1922	Liquid refractive index - Mineral oil	30 mL	
	Intended for use as a calibration material for refractometers, especially for the refractive index range applicable to solutions of sugar and water. Certified values are given for refractive indices at 6 wavelengths, in the visible light range, at 20°C and for the change in refractive index with respect to temperature.		
	PRG 7.21 - PRG 7.9		
	This group of 11 liquid reference materials, produced by LGC Promochem and certified by the Laboratory of Refractometry and Polarimetry of the Central Office of Measures (GUM), Warsaw, covers the wide range of refractive index from 1.333 (water) to 1.702 (1-lodonaphthalene).		
	The <i>n</i> values were determined on a Pulfrich refractometer, previously calibrated with solid Class 1 CRMs, for which values were established using goniometric procedures.		
	All reference materials are supplied with a certificate. Certified values to 5 significant figures for the refractive index at λ = 589.3 nm, t = 20°C and associated uncertainties are given.		
	Reference liquids are packed in glass ampoules (7.1, 7.2, 7.5, 7.6, 7.8, 7.9) or plastic drop-bottles (7.11, 7.12, 7.13, 7.20, 7.21).		
PRG 7.21	Water Refractive index1.333 at 20 °C		
PRG 7.1	2,2,4-Trimethylpentane Refractive index1.391 at 20 °C		
PRG 7.11	Methylsilicone oil Refractive index		
PRG 7.2	Methylcyclohexane Refractive index1.423 at 20 °C		
PRG 7.12	Silicone oil DC 556 Refractive index1.462 at 20 °C		
PRG 7.20	Paraffin oil Refractive index1.475 at 20 °C		
PRG 7.5	Toluene Refractive index1.496 at 20 °C	10 mL	
PRG 7.6	Chlorobenzene Refractive index1.524 at 20 °C	10 mL	
PRG 7.13	Silicone oil AN 140 Refractive index	10 mL	
PRG 7.8	1-Bromonaphthalene Refractive index1.657 at 20 °C	10 mL	
PRG 7.9	1-lodonaphthalene Refractive index1.702 at 20 °C	10 mL	
RPC18061	Refractive index liquids Refractive index range: 1.400-1.458 (interval 0.002)	30 x 7 mL	
RPC18062	Refractive index liquids Refractive index range: 1.400-1.458 (interval 0.004)	15 x 7 mL	
RPC18065	Refractive index liquids Refractive index range: 1.400-1.458 (interval 0.01)	6 x 7 mL	
RPC1806X	Refractive index liquid Any individual standard*	1 x 7 mL	

Code	Product	Uni
RPC1806Y	Refractive index liquid Any individual standard Refractive index range: 1.400-1.458 (interval 0.002)	1 x 30 mL
RPC18091	Refractive index liquids Refractive index range: 1.460-1.640 (interval 0.002)	91 x 7 mL
RPC18092	Refractive index liquids Refractive index range: 1.460-1.640 (interval 0.004)	46 x 7 mL
RPC18095	Refractive index liquids Refractive index range: 1.460-1.640 (interval 0.01)	19 x 7 mL
RPC1809X	Refractive index liquid Any individual standard* Refractive index range: 1.460-1.640 (interval 0.002)	1 x 7 mL
RPC1809Y	Refractive index liquid Any individual standard* Refractive index range: 1.460-1.640 (interval 0.002)	1 x 30 mL
RPC18121	Refractive index liquids Refractive index range: 1.642-1.700 (interval 0.002)	30 x 7 mL
RPC18122	Refractive index liquids Refractive index range: 1.642-1.700 (interval 0.004)	15 x 7 mL
RPC18125	Refractive index liquids Refractive index range: 1.642-1.700 (interval 0.01)	6 x 7 mL
RPC1812X	Refractive index liquids Any individual standard* Refractive index range: 1.642-1.700 (interval 0.002)	1 x 7 mL
RPC1812Y	Refractive index liquid Any individual standard* Refractive index range: 1.642-1.700 (interval 0.002)	1 x 30 mL
	*For individual standards please state in brackets after the catalogue number the refractive index req	luired.
Optical rota	ation	
GUM 8.1	Sucrose (Saccharose) Certified values Optical rotation at 20 °C 546 nm	100 g
Optical fibr	es	
NIST-2520	Optical fibre diameter standard - Diameter Intended for calibrating video microscopes or gray-scale systems used for fibre geometry measurements. The material consists of bare fibre in aluminium housing. Each sample is individually calibrated.	unit
NIST-2522	Pin Guage for Optical Fibre Ferrul This Standard Reference Material (SRM [®]) is intended primarily for use in calibrating instruments which measure small diameter artifacts such as pin gages, used for optical fibre ferrule hole calibration. Each SRM is individually certified and consists of a 60 mm long steel wire.	each
NIST-2523	Optical Fibre Ferrule Geometry This Standard Reference Material (SRM [®]) is intended primarily for use in calibrating instruments which measure small diameter artifacts such as optical fibre ferrules. Each SRM is individually certified and consists of a single ceramic optical fibre ferrule.	each
Colour mea	surement	
BCR-400	Red ceramic tile (Tomato paste colour) 100 mm x 100 mm	tile
	A ceramic tile the colour of which is defined by Hunter L, a and b values. Each tile is individually certified. The tile is intended for the purpose of calibration and does not represent a standard tomato paste colour. Nominal Hunter values: L 26, a 33, b 14.5	
	BCR-406A and BCR-406B	
	A reference for colorimeters and spectrophotometers measuring colour in reflection. The spectral reflectance is certified at 13 wavelengths between 400 nm and 1200 nm with a value higher than 93% between 450 nm and 800 nm.	
	a value higher than 95% between 450 him and 600 him.	

Ion activity

Code	Product	Unit
BCR-406B	Opal glass 100 mmD x 14 mm thick	
Photograph	у	
NIST-1010A	Microcopy resolution test chart Intended to be used to determine the resolving power of microcopy systems in the photographic industry. Designed to meet the general requirements for ISO test chart No. 2 as described in ISO 3334: 1989.	set (5)
NIST-5001	Two-Dimensional Grid Photomask Standard This Standard Reference Material (SRM [®]) is intended primarily for calibrating high accuracy two dimensional (X-Y) photomask/reticle registration metrology tools such as the IPRO, the IPRO II and the Leica 2020 as well as older tools such as the Nicon 5i.	
NIST-2059	Photomask linewidth calibration standard NIST-2059 is an antireflecting etched chrome binary photomask on a nominal 152.4 mm x 152.4 mm x 6.35 mm (the industry standard 6.0 in. x 6.0 in. x 0.25 in.) quartz substrate. It consists of patterns of clear and opaque isolated lines with nominal dimensions ranging from 0.25 µm to 32 µm and linespacing (pitch) patterns ranging from 0.5 µm to 250 µm. Each mask is individually calibrated, with certified values given for isolated linewidths (both clear and opaque) and center-to-center line spacings for one of the eight repeated patterns on the SRM. All measurements are averaged over the central 2 µm of each feature to reduce the influence of line edge roughness. The certified values are traceable to the definition of the meter with an expanded (k=2) uncertainty less than 25 nm for linewidths and spacewidths and less than 9 nm for pitch. Other small objects of interest, such as features on IC wafers, magnetic read/write head gaps, biological materials, phase shift photomasks, etc., will image differently in a microscope. Consequently, this SRM is intended for measurements on binary photomasks only, which represent more than 85 % of all photomasks manufactured worldwide in the most recent survey,	
Microscopy		
NIST-2800	Microscope magnification standard This Standard Reference Material® (SRM®) is intended primarily for use in calibrating the magnification or scale of microscopes used to make dimensional measurements. These microscopes include optical and scanning electron microscopes, imaging in either transmission or reflection modes, and scanning probe microscopes. NIST-2800 consists of a pattern of parallel lines whose nominal distances from the centerline range from ± 1 µm to ± 5 mm (see Figure 1). Certified values are given for the centre-to-centre distance of each line from the centreline; the linewidths are not certified. The pattern is printed in chrome on a fused-quartz substrate with nominal dimensions of 25 mm × 75 mm × 2.3 mm (1 in × 3 in × 0.09 in) using photomask production techniques.	
NIST-1867	Uncommon commercial asbestos This Standard Reference Material (SRM [®]) comprises three uncommon commercial asbestos materials (tremolite, actinolite asbestos, and anthophyllte asbestos) intended for use in the identification of these minerals by polarised light microscopy (PLM).	set (3)
NIST-1866B	Common commercial asbestos This standard reference material (SRM [®]) is comprised of three commercial-grade asbestos materials: chrysotile, asbestiform grunerite (amosite), and asbestiform riebeckite (crocidolite). These are the types of asbestos that were, or are, commonly used in commerce. These asbestos materials are typical of the asbestos found in bulk samples during routine asbestos inspections of building materials. The optical properties of these materials have been characterized so that this SRM may serve as a primary calibration standard in the identification of asbestos with polarized light microscopy (PLM). However, various conditions, such as geographic origin or acid/heat treatment of the asbestos, could cause the optical properties of the asbestos in bulk insulation samples to vary considerably from the materials comprising this SRM. A unit of NIST-1866b consists of a set of three bottles: one bottle containing chrysotile, one bottle containing asbestiform grunerite (amosite), and one bottle containing asbestiform riebeckite (crocidolite). Each bottle contains between 1 gram and 3 grams of material.	set (3)

Ion activity

pH calibration

Code	Product	Unit
NIST-185h	Potassium hydrogen phthalate	60 g
	This Standard Reference Material (SRM) is intended for use in preparing solutions for calibrating electrodes for pH measuring systems.	
	Certified value	
	рН (25 °C)	
	Certified values of the pH at other temperatures are given in the CoA.	
NIST-186G	pH Standards Potassium dihydrogen phosphate (186lg) Disodium hydrogen phosphate (186llg)	set
	NIST-186g is intended for use in preparing solutions for calibrating electrodes for pH measuring systems. NIST- 186 g consists of two components, each prepared to ensure high purity and uniformity: KH ₂ PO ₄ , potassium dihydrogen phosphate (186-I-g) and Na ₂ HPO ₄ , disodium hydrogen phosphate (186-II-g). A unit of NIST-186g consists of 30 g of potassium dihydrogen phosphate (186-I-g) and 45 g of disodium hydrogen phosphate (186-II-g), each contained in its respective clear glass bottle.	

Ion activity

Code	Product	Uni	
NIST-187E	Sodium tetraborate decahydrate (Borax) 30 This Standard Reference Material (SRM) is intended for use in preparing solutions for calibrating electrodes for pH measuring systems.		
NIST-2193A	Calcium carbonate pH standard This Standard Reference Material [®] (SRM [®]) is intended for use in preparing solutions for calibrating electrodes for pH measuring systems at pH values above 11.0. This lot of calcium carbonate (CaCO ₃) was selected for its low level of alkali metal impurities. However, this SRM [®] is certified ONLY as a pH standard, NOT as a pure substance. Before use for pH calibrations, a freshly filtered, saturated (at 25 °C) solution of Ca(OH) ₂ must be prepared from NIST-2193a. The certified pH(S) and U of this solution as a function of temperature are given below.	30 g	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
NIST-188	Potassium hydrogen tartrate Certified value pH (25 °C)	60 g	
NIST-191C	pH Standards (Carbonate buffers; sodium bicarbonate and sodium carbonate) This Standard Reference Material® (SRM®) is intended for use in preparing solutions for calibrating electrodes for pH measuring systems. NIST-191c consists of two components, each prepared to ensure high purity and uniformity: Sodium bicarbonate, NaHCO ₃ (191-I-c) and sodium carbonate, Na ₂ CO ₃ (191-II-c). A unit of NIST-191c consists of 25 g of sodium bicarbonate (191-I-c) and 30 grams of sodium carbonate (191-II-c), each contained in its respective clear glass bottle. Certified value pH (25 °C)	25 g	
NIST-RM 8040	Sodium oxalate (Reductometric) This Reference Material (RM) was prepared to provide material of uniform, high purity for use as a working standard for oxidation-reduction reactions. The material conforms to the American Chemical Society specification for reagent-grade material, but should not be considered as entirely free from impurities such as moisture, sodium hydrogen oxalate and sodium hydrogen carbonate. A unit of RM 8040 consists of one bottle containing 60 g of crystalline sodium oxalate. Reference value	60 <u>ç</u>	
	Reductometric Assay (mass fraction): 99.951 % ± 0.038 %		
Biological bu	iffer systems		
-	NIST-2182 - NIST-2184 These materials are intended for use in calibrating clinical instruments (e.g. blood pH measureme the physiologically important range of pH 7-8. They are based on a biological buffer system for clin measurements and are certified for use as an admixture only. The pH values for the buffer solutio certified at 0.05 and 0.08 M with respect to the free acid and the sodium salt admixture as a function temperature. The certified temperature range is from 0-50 °C.	nical pH ns are	
	NIST-2181 and NIST-2182 Both materials are required to prepare a standard solution.		
NIST-2181	Both materials are required to prepare a standard solution. HEPES free acid Certified values 0.05M pH (0-50 °C)7.832-7.216 0.08M pH (0-50 °C)	60 g	
NIST-2182	HEPES Sodium Salt Certified values 0.05M pH (0-50 °C)7.832-7.216 0.08M pH (0-50 °C)	60 g	

Ion activity

Code	Product	Uni
	NIST-2183 and NIST-2184	
	Both materials are required to prepare a standard solution.	
NIST-2183	MOPSO free acid Certified values <u>0.05M</u> pH (0-50 °C)7.260-6.528 0.08M	50 <u>ç</u>
	pH (0-50 °C)7.268-6.528	
NIST-2184	NaMOPSOate Certified values 0.05M pH (0-50 °C)	50 <u>c</u>
pD calibration	on	
NIST-2185	Potassium hydrogen phthalate Certified value pD (25 °C)4.518	60 g
NIST-2186II	Disodium Hydrogen Phosphate Required to prepare a standard solution. Certified value pD (25 °C)7.428 Other certified values at different temperatures are given in the CoA.	30 g
NIST-2191A	Sodium bicarbonate Required to prepare a standard solution. Certified value pD (25 °C)10.73 Other certified values at different temperatures are given in the CoA.	30 g
NIST-2192A	Sodium carbonate Required to prepare a standard solution. Certified value pD (25 °C)10.732 Other certified values at different temperatures are given in the CoA.	30 g
Ion-selective	e electrode calibration	
NIST-2201	Sodium chloride Certified values for activity coefficients, at 25°C, of the sodium and chloride ions at various concentrations and the related values of pNa and pCI.	125 g
NIST-2202	Potassium chloride Certified values for activity coefficients, at 25°C, of the potassium and chloride ions at various concentrations and the related values of pK and pCl.	160 g
NIST-2203	Potassium fluoride Certified values for activity coefficients, at 25°C, of the potassium and fluoride ions at various concentrations and the related value of pF.	125 g
Electrolytic	conductivity	
NIST-3199	KCl in n-propanol/de-ionised water Certified value Electrolytic conductivity (25 °C)15.36 μS/cm	500 mL
NIST-3192	KCI in de-ionised water Certified value Electrolytic conductivity (25 °C)496.73 μS/cm	8 x 50 mL
NIST-3193	KCI in de-ionised water Certified value	8 x 50 mL

Code	Product	Unit
	GUM 5.2 - GUM 5.6	
	These Reference Materials below, have been certified by the Physical C Office of Measures in Poland. They are intended for calibration of condu conductivity measurement as a control sample. These RMs are certified reference data published by the International Organisation of Legal Metr Materials are supplied with a certificate.	ctivity cells or use in electrolytic I in conformity with standard
GUM 5.1	KCI solution Certified value	100 mL
	Electrolytic conductivity11.13 S/m at 25 °C	
GUM 5.2	KCI Solution Certified value	100 mL
	Electrolytic conductivity1.285 S/m at 25 °C	
GUM 5.3	KCI solution Certified value Electrolytic conductivity0.1410 S/m at 25 °C	100 mL
GUM 5.4	KCI solution Certified value Electrolytic conductivity 0.01483 S/m at 25 °C	100 mL
GUM 5.5	KCI solution Certified value Electrolytic conductivity0.0720 S/m 25 °C	100 mL
GUM 5.6	KCI solution Certified value Electrolytic conductivity0.0293 S/m at 25 °C	100 mL

Reagecon electrolytic conductivity standards

Standard values

REACSKC84	Conductivity standard Electrolytic conductivity	500 mL
REACSKCS	Conductivity standard Electrolytic conductivity	500 mL
REACSKCL	Conductivity standard Electrolytic conductivity1413 µS/cm at 25°C	500 mL
REACSKC12880	Conductivity standard Electrolytic conductivity12880 µS/cm at 25°C	500 mL
REACSKC13	Conductivity standard Electrolytic conductivity1.30 µS/cm at 25°C	250 mL
REACSKC136	Conductivity standard Electrolytic conductivity1.30 µS/cm at 25°C	6 x 250 mL
REACSKC5	Conductivity standard Electrolytic conductivity5 µS/cm at 25°C	500 mL
REACSKC10	Conductivity standard Electrolytic conductivity10 µS/cm at 25°C	500 mL
REACSKC20	Conductivity standard Electrolytic conductivity20 µS/cm at 25°C	500 mL
REACSKC50	Conductivity standard Electrolytic conductivity50 µS/cm at 25°C	500 mL
REACSKC100	Conductivity standard Electrolytic conductivity100 µS/cm at 25°C	500 mL
REACSKC200	Conductivity standard Electrolytic conductivity200 µS/cm at 25°C	500 mL
REACSKC500	Conductivity standard Electrolytic conductivity500 µS/cm at 25°C	500 mL
REACSKC1000	Conductivity standard Electrolytic conductivity1000 µS/cm at 25°C	500 mL
REACSKC5M	Conductivity standard Electrolytic conductivity	500 mL

Electrical properties

Code	Product	Unit
REACSKC10M	Conductivity standard Electrolytic conductivity10000 μS/cm at 25°C	500 mL
REACSKC20M	Conductivity standard Electrolytic conductivity20000 µS/cm at 25°C	500 mL
REACSKC50M	Conductivity standard Electrolytic conductivity50000 µS/cm at 25°C	500 mL
REACSKC100M	Conductivity standard Electrolytic conductivity100000 µS/cm at 25°C	500 mL
REACSKC150M	Conductivity standard Electrolytic conductivity150000 µS/cm at 25°C	500 mL
REACSKC200M	Conductivity standard Electrolytic conductivity200000 µS/cm at 25°C	500 mL
REACSKC300M	Conductivity standard Electrolytic conductivity300000 µS/cm at 25°C	500 mL
REACSKC350M	Conductivity standard Electrolytic conductivity350.000 µS/cm at 25°C	500 mL
REACSKC450M	Conductivity standard Electrolytic conductivity450000 µS/cm at 25°C	500 mL
REACSKC500M	Conductivity standard Electrolytic conductivity500000 µS/cm at 25°C	500 mL

Conductivity standards according to the European Pharmacopoeia (Chapter 2)

REAEP1330	Conductivity standard	500 mL
	Electrolytic conductivity1330 µS/cm at 20°C	
	Resistivity752 Ω cm	
REAEP133	Conductivity standard	500 mL
	Electrolytic conductivity133 µS/cm at 20°C	
	Resistivity7519 Ω cm	
REAEP266	Conductivity standard	500 mL
	Electrolytic conductivity	
	Resistivity	

Electrical properties

Electrical resistivity and conductivity

200 g
=== 3
sed to determine the dc volume resistivity of
for sheet resistance and resistivity
1 wafer
raphic orientation.
1 wafer
the neutron transmutation doping process.

Viscosity

		riscosity
Code	Product	Uni
NIST-2547	Silicon chip - Resistivity	1 wafe
	100 mm (D) x 0.625 mm Float zone silicon with (111) orientation and phosphorus-doped by the neutron transmutation doping process.	
	Certified value	
	Resistivity	
NIST-RM 8420	Electrolytic iron rod	1 roc
	0.64 cm (D) x 5.0 cm	
	Thermal conductivity and electrical resistivity as a function of temperature (2-1000 K)	
Superconduc	cting critical current	
NIST-1457	Niobium-titanium wire - Critical current	each
	8.7 cm diameter spool Intended for checking the performance of measurement systems used in superconductor technology. It consists of 2.2 m of a multifilamentary niobium titanium, copper-stabilised superconducting wire wound in a single layer onto a spool with a core diameter of 8.7 cm. Certified values for critical current at 4.2 k and 0.2 μV/cm	
Dielectric co		
NIST-774	Lead-silica - Dielectric constant	each
	5 cm x 5 cm x 2.5 cm Intended for checking methods used to determine dielectric constant and ac loss characteristics of insulating materials per ASTM D 150. Certified value: K ~7.47 at 100 Hz	cuci
Viscosity		
Viscosity of	glass	
Code	Product	Uni
	NIST-717a	
	Intended for checking the performance of high temperature viscosity equipment (rotating cylinder and low temperature viscosity equipment (fibre elongation, beam bending, parallel plates, etc).	s)
NIST-717A	Borosilicate	450 g
	Certified log ₁₀ viscosity values (1.00-4.50) versus temperature (1555-880 °C) Indicative values for softening point, annealing point, strain point	
Viscosity fix	points	
	NIST-709 - NIST-717a	
	Intended for calibration of equipment for the determination of the softening, annealing and strain points of glass.	
NIST-709	Extra dense lead	500 g
	Certified values	
	Softening point	
NIST-713	Dense barium crown glass 620/603 Certified values	225 g
	Softening point	
NIST-714	Alkaline earth alumina silicate	225 g
	Certified values	
	Softening point	
NIST-716	Neutral glass	225 ថ្
	Certified values Softening point	
NIST-717A	Borosilicate	450 g
	Certified log ₁₀ viscosity values (1.00-4.50) versus temperature (1555-880 °C)	+50 5
	Indicative values for softening point, annealing point, strain point	

Viscosity oil standards

Code	Product	0) (4.0			Unit
	PSL2700V01 - PSL270				
	The Standards will be s to NIST and other inter	supplied complete with national laboratories. I lives are provided by u	UKAS calibration certific Jncertainties of measure using stable base oils.Th	poratory No. 0247 to ISO 1 cates and have direct trace ment are stated on the ca e viscosity oil standards a	eability libration
	 Glass Capillary viscor Automated Kinematic Rotational/Cone & Pla Low Temperature Vis Cold Cranking Simula Flow Cups 	Viscometer Systems ate Viscometers cometer Systems			
PSL2700V01	N4 - Viscosity oil stand <u>Kinematic viscosity (nominal</u> 0.47 mm ² /s,cSt (20 °C) Dynamic viscosity (nominal)		0.40 mm ² /s,cSt (40 °C)		500 mL
	0.31 mPa.s,cP (20 °C)	0.29 mPa.s,cP (25 °C)	0.26 mPa.s,cP (40°C)		
PSL2700V02	N8 - Viscosity oil stand Kinematic viscosity (nominal 1. mm ² /s,cSt (20 °C)		0.75 mm ² /s,cSt (40 °C)		500 mL
	Dynamic viscosity (nominal) 0.77 mPa.s,cP (20 °C)	0.72 mPa.s,cP (25 °C)	0.56 mPa.s,cP (40 °C)		
PSL2700V03	N1.0 - Viscosity oil star	ndard			500 mL
	<u>Kinematic viscosity (nominal</u> 1.3 mm ² /s,cSt (20 °C) Dynamic viscosity (nominal)	<u>)</u> 1.2 mm²/s,cSt (25 °C)	0.97 mm²/s,cSt (40 °C)		
	1.0 mPa.s,cP (20 °C)	0.93 mPa.s,cP (25 °C)	0.76 mPa.s,cP (40 °C)		
PSLN2	N2 - Viscosity oil stand Kinematic viscosity (nominal				500 mL
	2.9 mm ² /s,cSt (20 °C) Dynamic viscosity (nominal)	2.6 mm ² /s,cSt (25 °C)	2.0 mm ² /s,cSt (40 °C)	1.7 mm ² /s,cSt (50 °C)	
	2.2 mPa.s,cP (20 °C)	2.0 mPa.s,cP (25 °C)	1.5 mPa.s,cP (40 °C)	1.3 mPa.s,cP (50 °C)	
PSL2700V04	S3 - Viscosity oil stands Kinematic viscosity (nominal				500 mL
	5.0 mm²/s,cSt (20 °C) 4.4 mm²/s,cSt (25 °C)	2.9 mm²/s,cSt (40 °C) 2.6 mm²/s,cSt (50 °C)	1.3 mm²/s,cSt (100 °C)		
	Dynamic viscosity (nominal) 4.1 mPa.s,cP (20 °C) 3.6 mPa.s,cP (25 °C)	2.4 mPa.s,cP (40 °C) 2.1 mPa.s,cP (50 °C)	0.98 mPa.s,cP (100 °C)		
PSL2700V05	S6 - Viscosity oil standa				500 mL
	Kinematic viscosity (nominal 11 mm²/s,cSt (20 °C) 8.9 mm²/s,cSt (25 °C)	<u>)</u> 5.7 mm²/s,cSt (40 °C) 4.6 mm²/s,cSt (50 °C)	1.9 mm²/s,cSt (100 °C)		
	Dynamic viscosity (nominal) 8.8 mPa.s,cP (20 °C) 7.4 mPa.s,cP (25 °C)	4.8 mPa.s,cP (40 °C) 3.7 mPa.s,cP (50 °C)	1.5 mPa.s,cP (100 °C)		
PSL2700V06	N10 - Viscosity oil stan Kinematic viscosity (nominal				500 mL
	21 mm ² /s,cSt (20 °C) 17 mm ² /s,cSt (25 °C) Dynamic viscosity (nominal)	10 mm²/s,cSt (40 °C) 7.5 mm²/s,cSt (50 °C)	2.7 mm ² /s,cSt (100 °C)		
	17 mPa.s,cP (20 °C) 14 mPa.s,cP (25 °C)	9.0 mPa.s,cP (40 °C) 6.2 mPa.s,cP (50 °C)	2.1 mPa.s,cP (100 °C)		
PSL2700V07	S20 - Viscosity oil star Kinematic viscosity (nominal				500 mL
	47 mm ² /s,cSt (20 °C) 37 mm ² /s,cSt (25 °C) Dynamic viscosity (nominal)	18 mm ² /s,cSt (40 °C) 13 mm ² /s,cSt (50 °C)	4.0 mm²/s,cSt (100 °C)		
	40 mPa.s,cP (20 °C) 31 mPa.s,cP (25 °C)	16 mPa.s,cP (40 °C) 11 mPa.s,cP (50 °C)	3.2 mPa.s,cP (100 °C)		

Viscosity

			VISCOSITY
Code	Product		Unit
PSL2700V08	N35 - Viscosity oil standard		500 mL
	<u>Kinematic viscosity (nominal)</u>	5 c ² / 0/ (100 cO)	
	95 mm ² /s,cSt (20 °C) 32 mm ² /s,cSt (40 °C) 72 mm ² /s,cSt (25 °C) 23 mm ² /s,cSt (50 °C)	5.8 mm ² /s,cSt (100 °C)	
	Dynamic viscosity (nominal)		
	82 mPa.s,cP (20 °C) 27 mPa.s,cP (40 °C) 62 mPa.s,cP (25 °C) 19 mPa.s,cP (50 °C)	4.7 mPa.s,cP (100 °C)	
PSL2700V09	S60 - Viscosity oil standard		500 mL
	Kinematic viscosity (nominal)		
	160 mm ² /s,cSt (20 °C) 54 mm ² /s,cSt (40 °C) 120 mm ² /s,cSt (25 °C) 35 mm ² /s,cSt (50 °C)	7.7 mm²/s,cSt (100 °C)	
	Dynamic viscosity (nominal)		
	140 mPa.s,cP (20 °C) 47 mPa.s,cP (40 °C)	6.3 mPa.s,cP (100 °C)	
DOL 0700) (40	104 mPa.s,cP (25 °C) 30 mPa.s,cP (50 °C)		
PSL2700V10	N100 - Viscosity oil standard Kinematic viscosity (nominal)		500 mL
	320 mm ² /s,cSt (20 °C) 97 mm ² /s,cSt (40 °C)	11.0 mm²/s,cSt (100 °C)	
	230 mm ² /s,cSt (25 °C) 59 mm ² /s,cSt (50 °C)		
	Dynamic viscosity (nominal) 280 mPa.s,cP (20 °C) 84 mPa.s,cP (40 °C)	9.1 mPa.s,cP (100 °C)	
	200 mPa.s,cP (25 °C) 51 mPa.s,cP (50 °C)		
PSLN140	N140 - Viscosity oil standard		500 mL
	Kinematic viscosity (nominal) 400 mm ² /s,cSt (20 °C) 140 mm ² /s,cSt (40 °C)	18.0 mm ² /s,cSt (100 °C)	
	$300 \text{ mm}^2/\text{s,cSt} (20 ^{\circ}\text{C})$ $140 \text{ mm}^2/\text{s,cSt} (40 ^{\circ}\text{C})$ $300 \text{ mm}^2/\text{s,cSt} (25 ^{\circ}\text{C})$ $90 \text{ mm}^2/\text{s,cSt} (50 ^{\circ}\text{C})$	18.0 mm /s,cst (100 °C)	
	Dynamic viscosity (nominal)		
	350 mPa.s,cP (20 °C) 120 mPa.s,cP (40 °C) 260 mPa.s,cP (25 °C) 77 mPa.s,cP (50 °C)	15.0 mPa.s,cP (100 °C)	
PSL2700V11	S200 - Viscosity oil standard		500 mL
	Kinematic viscosity (nominal)		
	660 mm ² /s,cSt (20 °C) 180 mm ² /s,cSt (40 °C) 460 mm ² /s,cSt (25 °C) 110 mm ² /s,cSt (50 °C)	17 mm²/s,cSt (100 °C)	
	Dynamic viscosity (nominal)		
	590 mPa.s,cP (20 °C) 150 mPa.s,cP (40 °C) 410 mPa.s,cP (25 °C) 91 mPa.s,cP (50 °C)	14 mPa.s,cP (100 °C)	
PSLN230	N230 - Viscosity oil standard		500 mL
F SLINZ SU	Kinematic viscosity (nominal)		500 me
	860 mm ² /s,cSt (20 °C) 230 mm ² /s,cSt (40 °C)	21 mm ² /s,cSt (100 °C)	
	600 mm ² /s,cSt (25 °C) 145 mm ² /s,cSt (50 °C) Dynamic viscosity (nominal)		
	770 mPa.s,cP (20 °C) 190 mPa.s,cP (40 °C)	17.0 mPa.s,cP (100 °C)	
	535 mPa.s,cP (25 °C) 120 mPa.s,cP (50 °C)		
PSL2700V12	N350 - Viscosity oil standard Kinematic viscosity (nominal)		500 mL
	1400 mm ² /s,cSt (20 °C) 310 mm ² /s,cSt (40 °C)	24 mm ² /s,cSt (100 °C)	
	920 mm ² /s,cSt (25 °C) 180 mm ² /s,cSt (50 °C)		
	Dynamic viscosity (nominal) 1200 mPa.s,cP (20 °C) 270 mPa.s,cP (40 °C)	20 mPa.s,cP (100 °C)	
	790 mPa.s,cP (25 °C) 150 mPa.s,cP (50 °C)		
PSLN415	N415 - Viscosity oil standard		500 mL
	<u>Kinematic viscosity (nominal)</u>	242/	
	1900 mm²/s,cSt (20 °C) 415 mm²/s,cSt (40 °C) 1240 mm²/s,cSt (25 °C) 240 mm²/s,cSt (50 °C)	34 mm²/s,cSt (100 °C)	
	Dynamic viscosity (nominal)		
	1630 mPa.s,cP (20 °C) 360 mPa.s,cP (40 °C) 1065 mPa.s,cP (25 °C) 200 mPa.s,cP (50 °C)	28.0 mPa.s,cP (100 °C)	
PSL2700V13	S600 - Viscosity oil standard		500 mL
-	Kinematic viscosity (nominal)		
	2400 mm ² /s,cSt (20 °C) 520 mm ² /s,cSt (40 °C) 1600 mm ² /s,cSt (25 °C) 290 mm ² /s,cSt (50 °C)	35 mm²/s,cSt (100 °C)	
	Dynamic viscosity (nominal)		
	2100 mPa.s,cP (20 °C) 450 mPa.s,cP (40 °C)	29 mPa.s,cP (100 °C)	
	1400 mPa.s,cP (25 °C) 240 mPa.s,cP (50 °C)		

Viscosity

Code	Product			Unit
PSLN730	N730 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)			
	3390 mm²/s,cSt (20 °C) 730 mm²/s,cSt (40 ° 2260 mm²/s,cSt (25 °C) 410 mm²/s,cSt (50 °			
	Dynamic viscosity (nominal)			
	2970 mPa.s,cP (20 °C) 630 mPa.s,cP (40 ° 1980 mPa.s,cP (25 °C) 340 mPa.s,cP (50 °			
PSL2700V14	N1000 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)			
	4800 mm ² /s,cSt (20 °C) 940 mm ² /s,cSt (40 ° 3100 mm ² /s,cSt (25 °C) 520 mm ² /s,cSt (50 °			
	Dynamic viscosity (nominal)			
	4100 mPa.s,cP (20 °C) 800 mPa.s,cP (40 °C) 2700 mPa.s,cP (25 °C) 450 mPa.s,cP (50 °C)			
PSLN1300	N1300 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)			
	6760 mm ² /s,cSt (20 °C) 1320 mm ² /s,cSt (40 4365 mm ² /s,cSt (25 °C) 730 mm ² /s,cSt (50 °C)			
	Dynamic viscosity (nominal)			
	5775 mPa.s,cP (20 °C) 1120 mPa.s,cP (40 3800 mPa.s,cP (25 °C) 630 mPa.s,cP (50 °	, , , , ,		
PSL2700V15	S2000 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)			
	8600 mm²/s,cSt (20 °C) 1700 mm²/s,cSt (40 5600 mm²/s,cSt (25 °C) 880 mm²/s,cSt (50 °			
	Dynamic viscosity (nominal)			
	7500 mPa.s,cP (20 °C) 1500 mPa.s,cP (40 4800 mPa.s,cP (25 °C) 760 mPa.s,cP (50 °			
PSL2700V16	N4000 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)			
	18000 mm²/s,cSt (20 °C) 3400 mm²/s,cSt (40 11000 mm²/s,cSt (25 °C) 1700 mm²/s,cSt (50			
	Dynamic viscosity (nominal)			
	16000 mPa.s,cP (20 °C) 2900 mPa.s,cP (40 10000 mPa.s,cP (25 °C) 1500 mPa.s,cP (50			
PSL2700V17	S8000 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)			
	35000 mm²/s,cSt (20 °C) 6700 mm²/s,cSt (40 22000 mm²/s,cSt (25 °C) 3200 mm²/s,cSt (50			
	Dynamic viscosity (nominal)			
	31000 mPa.s,cP (20 °C)5900 mPa.s,cP (4020000 mPa.s,cP (25 °C)2700 mPa.s,cP (50			
PSL2700V18	N15000 - Viscosity oil standard			500 mL
	Kinematic viscosity (nominal)	2/		
	65000 mm ² /s,cSt (20 °C) 13000 mm ² /s,cSt (4 41000 mm ² /s,cSt (25 °C) 5800 mm ² /s,cSt (50			
	Dynamic viscosity (nominal) 58000 mPa.s,cP (20 °C) 11000 mPa.s,cP (40 37000 mPa.s,cP (25 °C) 5100 mPa.s,cP (50	, , , , ,		
PSL2700V19	S30000-Viscosity oil standard	-,		500 mL
1 022700 13	Kinematic viscosity (nominal)			JUO IIIL
	82000 mm ² /s,cSt (25 °C) 23000 mm ² /s,cSt (4	0 °C) 11000 mm ² /s,cSt (50 °C)	670 mm ² /s,cSt (100 °C)	
	Dynamic viscosity (nominal)	o o, 11000 min /3,000 (00 O)	010 mm /3,001 (100 -0)	
	74000 mPa.s,cP (25 °C) 21000 mPa.s,cP (40) °C) 9900 mPa.s,cP (50 °C)	580 mPa.s,cP (100 °C)	

Polymeric properties

Individual molecular weight polymer standards

Code	Product	Unit
NIST-2885	Polyethylene	300 mg
	Certified value	
	Molar Mass 6.28 x 10 ³ g/mol	
NIST-2886	Polyethylene	300 mg
	Certified value	
	Molar Mass 87.0 x 10 ³ g/mol	
NIST-2887	Polyethylene	300 mg
	Certified value	-
	Molar Mass 196.4 x 10 ³ g/mol	
NIST-1482A	Polyethylene	0.3 g
	Certified values	U
	Mass-average molar mass	
Molecular w	eight and melt flow	
NIST-705A	Polystyrene - Heat capacity and molecular weight	5 g
	Molecular weight (MW) values, measured using various techniques, and limiting viscosity (LV) numbers.	
	Certified values	
	M _n by membrane osmometry	
	M _W by light scattering	
	For heat capacity please ask for detailed list	
NIST-706A	Polystyrene - Broad molecular weight distribution	18 g
	Certified values	10 9
	Mass-average molar mass (M _w) 285,000 g/mol	
	Indicative values for intrinsic viscosity in benzene at 25 °C and cyclohexane at 35 °C	
NIST-1473B	Low densitiy polyethylene resin	60 g
	This material is certified for melt flow rate using ASTM D 1238-00, Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer Standard Test Condition 190/2.16. The flow rate of the melt was determined at 190.0 °C \pm 0.1 °C and a load of 2.16 kg by procedure A of the ASTM method. A manually operated extrusion plastometer was used.	5
	Certified value	
	Melt flow rate (FR) 1.13 g/10 min	
NIST-1474A	Polyethylene resin - Melt flow rate	60 g
	Certified for melt flow rate, FR-190/2.16, using ASTM Method D 1238-86 at 190 °C.	
	Certified value	
	Melt flow rate (FR) 5.10 g/10 min	
NIST-1475A	Polyethylene, linear - Melt flow rate	50 g
	Certified for melt flow rate, FR-190/2.16, using ASTM Method D 1238-90b, and Limiting viscosity (LV).	3
	Certified values	
	Melt flow rate2.02 g/10 min	
	Weight average MW (light scattering)	
	Weight average MW (size exclusion chromatography)53,070 g/mol	
	Z-average MW (size exclusion chromatography)138,000 g/mol LV in 1-chloronaphthalene (130 °C)	
	LV in 1,2,4-trichlorobenzene (130 °C)	
	LV in decahydronapthalene (130 °C)	
NIST-1476A	Branched polyethylene resin - Melt flow rate This Standard Reference Material [®] (SRM [®]) is intended for use in calibration and performance evaluation of	12 g
	Instruments used in polymer technology and science for the determination and performance evaluation of Method D1238-00. It is supplied as white pellets of polyethylene. This material is certified for melt flow rate using ASTM Method D1238-00 condition 190/2.16. Under this condition the melt flow rate is 1.23 g/10 min with a standard deviation of 0.036 g/10 min and with 29 degrees of freedom.	
	The certified measurement uncertainty is found to be 0.110 g/10 min and is expressed as a combined expanded uncertainty with a coverage factor $k = 2$, calculated in accordance with ISO and NIST Guides procedure.	
NIST-1478	Polystyrene - narrow molecular weight distribution Certified values	2 g
	Number average MW (membrane osmometry)	
	Weight average MW (sedimentation equilibrium ultracentrifugation)	
	Limiting viscosity in toluene (25 °C)	

Polymeric properties

Code	Product	Unit
NIST-1479	Polystyrene - narrow molecular weight distribution Certified value	2 g
	Weight average MW (light scattering)1,050,000 g/mol	
NIST-2888	Polystyrene	0.3 g
	Certified value	
	Mass-average molar mass (M _w) 7.19 x 10 ³ g/mol	
NIST-1480	Polyurethane	1 g
	Certified value	
	Weight average MW (light scattering) 47,300 g/mol	
	Indicative value for limiting viscosity	
NIST-1483A	Polyethylene, linear	300 mg
	Certified values	
	Mass-Average Molecular Mass (M _w) 32100 g/mol	
	Number Average Molecular Mass (Mn) 28900 g/mol Intrinsic Viscosity 80.0 mL/g	
NIST-1484A	Polyethylene, linear - narrow molecular weight distribution	300 mg
	Certified values	
	Number-average MW (membrane osmometry)100,500 g/mol Weight average MW (light scattering)	
	Limiting viscosity in 1,2,4-trichlorobenzene (130 °C)	
	Limiting viscosity in 1-chloronaphthalene (130 °C)169.4 mL/g	
NIST-1487	Poly(methylmethacrylate)	2 g
	Certified values	
	Weight-average molecular weight (sedimentation equilibrium ultracentrifugation)	
NIST-1488	Poly(methylmethacrylate) Certified values	2 g
	Number-average molecular weight (membrane osmometry)29,300 g/mol Limiting viscosity in tetrahydrofuran (25 °C)	
NIST-1489	Poly(methylmethacrylate) Certified values	2 g
	Number-average molecular weight (membrane osmometry)115,000 g/mol Limiting viscosity in tetrahydrofuran (25 °C)	
NIST-1496	Polyethylene gas pipe resin (unpigmented)	900 g
	Certified values	
	Melt flow rate (FR-190/2.16, using ASTM Method D 1238-82)0.26 g/10 min Intrinsic viscosity in 1,2,4-trichlorobenzene (140 °C)210 mL/g	
NICT 1022		200 mg
NIST-1923	Poly(ethylene oxide) - molecular weight Certified value	200 mg
	Weight average molecular weight 26,900 g/mol	
NIST-1924	Poly(ethylene oxide) - molecular weight	200 mg
11131-1924	Certified value	200 mg
	Weight average molecular weight 120,900 g/mol	
NIST-2491	Non-Newtonian polymer melt for rheology	100 mL
1131-2491	This Standard Reference Material [®] (SRM [®]) is intended primarily for use in calibration and performance evaluation of instruments used to determine the viscosity and first normal stress difference in steady shear, or to determine the dynamic mechanical storage and loss moduli and shift factors through time-temperature superposition. NIST-2491 consists of polydimethylsiloxane. The supplier identifies the polydimethylsiloxane as having a number average molecular mass of 308,000 g/mol. Certified values of the viscosity and first normal stress difference as functions	100 mL
	of shear rate are given in the certificate at temperatures of 0 °C, 25 °C, and 50 °C, respectively. The expanded combined uncertainties in the certified values of the viscosity and first normal stress difference are also listed.	
	The certified values of the storage modulus G' and loss modulus G" as functions of frequency at 0 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C, respectively are also given in the certificate.	

Edition 2008/2009

Relative humidity

	- НМ11 - НМ90	
	Please specify the type of hygrometer to be used to enable the appropriate adapter to be supplie	ed.
Code	Product	Uni
HM11	Relative humidity standard Nominal relative humidity	unit
HM22	Relative humidity standard Nominal relative humidity	unit
HM33	Relative humidity standard Nominal relative humidity	unit
HM54	Relative humidity standard Nominal relative humidity	unit
HM75	Relative humidity standard Nominal relative humidity	unit
HM80	Relative humidity standard Nominal relative humidity	unit
HM90	Relative humidity standard Nominal relative humidity	unit
Scanning ele	ectron microscope	
NIST-2069B	SEM Performance Standard Graphitised rayon fibres with smooth and uniform edges on a 12.5 mm diameter SEM specimen mount with a 3 mm peg. One edge of a single fibre is used as a clearly defined boundary across which the electron beam is scanned. The slope of the resultant detector signal waveform is a measure of the SEM performance that can be related to the resolution capability of the SEM.	each
NIST-RM 8091	Scanning Electron Microscope Sharpness Standard This Reference Material (RM) is intended primarily for use in checking the sharpness of scanning electron microscopes. It is supplied as a small (3mm x 2 mm) diced semiconductor chip. Please ask for further details.	each
X-ray diffract	tion	
NIST-656	Silicon nitride This Standard Reference Material (SRM [®]) consists of two powders intended for quantitative analysis of the α and β polymorphs of silicon nitride via powder diffraction methods. The powders are combinations of the α and β polymorphs; one is high in the α phase content (α 656), while the other contains a larger amount of the β polymorph (β 656).	2 x 10 g
NIST-674B	X-Ray powder diffraction intensity set This Standard Reference Material (SRM [®]) consists of four oxide powders intended primarily for use as internal standards for quantitative X-ray diffraction analysis. The powders are ZnO (wurtzite structure), TiO ₂ (rutile structure), Cr ₂ O ₃ (corundum structure), and CeO ₂ (fluorite structure). These four oxides offer a range of linear attenuations for Cu-Kα radiation: 279 cm ⁻¹ , 536 cm ⁻¹ , 912 cm ⁻¹ , and 2203 cm ⁻¹ , respectively, that allow the user to nominally match that of standard to the unknown in order to minimize the effects of microabsorption. A unit of NIST-674b consists of approximately 10 g of each powder, bottled in an argon atmosphere. Certified values Phase purity and uncertainty Crystalline component Phase Purity Crystalline component Phase Purity	set
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
NIST-675	Mica x-ray diffraction Intended for use as an external or internal low 2 (large d-spacing) calibration standard for powder diffractometry. Certified value	7.5 g
NIST-1976	Alumina plate, sintered Intended for use in the calibration of powder X-ray equipment for diffraction intensity as a function of 20 angle (instrument sensitivity). Certified values (for lattice parameters) a 0.4758846 nm σ 0.0000109 σ 0.1540629 nm	plate

Code	Product	Unit
NIST-1990	Single Crystal Diffractometer Alignment Standard - Ruby Sphere Standard Reference Material (SRM [®]) 1990 is intended primarily for use as an alignment standard for single crystal diffractometry. One unit consists of three chromium-doped single crystal aluminum oxide (ruby) spheres. The spheres are nominally 152 mm in diameter with 1.3 mm sphericity. The spherical geometry was chosen to facilitate alignment and to avoid corrections for absorption. These spheres produce reflections at high angles for copper and molybdenum radiation. The space group is R3c. Certified lattice parameters of NIST-1990 at 25 °C are: a: 0.476080 nm ± 0.000029 nm c: 1.299568 nm ± 0.000087 nm	
NIST-1994	Standard silicon single crystal wafer for crystalline orientation This Standard Reference Material (SRM [®]) is intended for use in the calibration of instruments (X-ray diffractometers) used to measure the crystal orientation of wafers relative to the crystal surface. The SRM unit consists of a 100-mm diameter silicon wafer. The crystal orientation of the (001) silicon crystal planes relative to the surface normal has been measured both parallel and perpendicular to an edge flat that is manufactured into the wafer.	wafer
Density		
NIST-211D	Toluene Certified values Temperature [°C] Density [kg/m³] 15 871.476 ± 0.025 20 866.828 ± 0.025 25 862.170 ± 0.025	4 x 5 mL
NIST-2214	Isooctane (2, 2, 4-Trimethylpentane) - Density Certified Values of NIST-2214 at three sample temperatures Temperature °C Density, Temperature °C Density, 15.000	4x5mL
	HDF01 - HDF-012	
HDF01	Certified densities were determined by means of hydrostatic weighing. 2,2,4-Trimethylpentane Temperature range 15-25 °C Certified value Liquid density (20 °C)	10 mL
HDF02	Dodecane Temperature range 10-50 °C Certified value Liquid density (20 °C)	10 mL
HDF04	Base lubricating oil approx. 8 mPa.s at 40°C Temperature range 15-50 °C Certified value Liquid density (20 °C)	10 mL
HDF05	Base lubricating oil approx. 30 mPa s at 40°C Temperature range 15-50 °C Certified value Liquid density (20 °C)	10 mL
HDF06	Base lubricating oil approx. 110 mPa s at 40°C Temperature range 15-50 °C Certified value Liquid density (20 °C)	10 mL
HDF07	Lubricating oil A90 approx. 160 mPa s at 40°C Temperature range 15-50 °C Certified value Liquid density (20 °C)	10 mL
HDF08	Ethanol in water approx. 41 % ABV Use of this material is not recommended unless required by fiscal authorities. Certified value Liquid density (20 °C)	10 mL
HDF09	Ethanol in water approx. 11 % ABV Use of this material is not recommended unless required by fiscal authorities. Certified value Liquid density (20 °C)	10 mL

Code	Product	Unit
HDF15	Water Certified value Liquid density (20°C)998 kg/m ³	10 mL
HDF10	Dextrose in water approx. 10 % by weight Use of this material is not recommended unless required by fiscal authorities. Certified value Liquid density (20 °C)	10 mL
HDF11	Dimethylphthalate approx. 17 mPa s at 20°C Temperature range 15 to 25°C Certified value Liquid density (20 °C)	10 mL
HDF13	Sodium bromide in water Temperature range 15-25 °C Certified value Liquid density (20 °C)	10 mL
HDF14	Caesium chloride in water approx. 47% by weight Certified value Liquid density (20°C)	10 mL
HDF12	Tetrachloroethylene Temperature range 15-50 °C Certified value Liquid density (20 °C)1623 kg/m ³	10 mL
	GUM1.1 - GUM1.11 Liquid density standards certified by the Central Office of Measures (GUM). Ir checking densimeters used for measuring density of liquids. Supplied with a c values at temperatures from 20 °C to 50 °C, with an uncertainty 0.05 kg/m ³ . Va decimal place are given in the certificate for particular series.	ertificate showing density
GUM 1.1	n-Hexane Certified value Density	10 mL
GUM 1.2	n-Heptane Certified value Density	10 mL
GUM 1.3	2,2,4-Trimethylpentane Certified value Density	10 mL
GUM 1.4	n-Nonane Certified value Density	10 mL
GUM 1.5	n-Octane Certifed value Density	10 mL
GUM 1.6	Methylcyclohexane Certified value Density	10 mL
GUM 1.7	Cyclohexane Certified value Density	10 mL
GUM 1.8	Toluene Certified value Density	10 mL
GUM 1.10	2,4-Dichlorotoluene Certified value Density1249 kg/m³ at 20°C	10 mL
GUM 1.11	Tetrachloroethylene Certified value Density1623 kg/m³ at 20°C	10 mL

Miscellaneo	us				
Code	Product				Unit
Chemical re	sistance (durabi	lity) of glass			
	NIST-622 and NIS	T-623			
	determine the resi fiftieth-normal sulp	stance of glass cor	tainers to chemical	ing test methods and calibra attack. The values given repr ed end point of the alkaline e °C.	esent the volume of
NIST-622	Soda lime silica (c Certified value Volume of 0.02N HaS0	lurability) D₄7	67 ml		2.2 kg
NIST-623	Borosilicate glass Certified value	D ₄ 0			2.2 kg
Multi-test ve	erification materi	als (MTVMs)			
	The Multi-Test Ve sample to validate	rification Materials	instrumentation. Eac	because they enable a labor ch unit is supplied with data f	
SS99850-0	SETA MTVM Kerc Test Name	sine (Jet turbine fu ASTM-IP Method	,	•	500 mL
	Distillation IBP Distillation 10 % Distillation 50 % Distillation 90 % Distillation FBP Distillation residue Distillation loss	D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123	Range 		
	Freezing point Aromatics FIA Smoke point Acid number	D2386-IP16 D1319-IP156 D1322 D3242-IP354		25 mL 0.75 mL 20 mL 100 mL	
SS99851-0	SETA MTVM Gas Test Name Density at 15 °C	ASTM-IP Method	Range	Amount/test	500 mL
	Distillation IBP Distillation 10 % Distillation 50 % Distillation 90 % Distillation 95 % Distillation FBP Distillation residue Flashpoint Cloud point CFPP Pour point Kin. Visc. (40 °C) Lubricity HFRR	D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D86-IP123 D93-IP34 D93-IP34 D2500-IP219 IP309 D97-IP15 D445-IP71 D6079; IP450	$\begin{array}{c} 0.83\mathcal{-}0.83\mathcal{-}0.83\mathcal{-}0.83\mathcal{-}0.83\mathcal{-}0.83\mathcal{-}0.83\mathcal{-}0.83\mathcal{-}0.260\mathcal{-}200\mathcal{-}220-$	100 mL 100 mL 100 mL 100 mL 100 mL 100 mL 100 mL 	
SS99852-0	Pour point Kin. Visc. (50 °C)	ASTM-IP Method D1298-IP160 D97-IP15 D445-IP71	Range 	up to 38 mL up to 500 mL	500 mL
	Micro carbon	D4530;IP398	0.10 to 30.0 %(m/m). 		
SS99853-0	SETA MTVM lubri Test Name Kin. Visc. (40 °C) Viscosity index Pour point Flash point	cating oil ASTM-IP Method 	Range 70-160 mm²/s. 10-19 mm²/s. 	Amount/test 	500 mL

Code	Product	Uni
SS99854-0	SETA MTVM motor gasoline	500 mL
	Test Name ASTM-IP Method Range Amount/test	
	Motor octane no	
	Research octane noD2699	
	Density at 15 °CD1298-IP1600.71-0.763 kg/L200 mL	
	Distillation IBP	
	Distillation 70 °C	
	Distillation 150 °C	
	Distillation FBP100mL	
	Aromatics FIA	
	Olefins FIA01319-IP15615-15 %vol0.75 mL Saturates FIA01319-IP15642-72 %vol0.75 mL	
	Vapour Pressure	
SS99856-0	SETA MTVM bitumen	500 ml
2299000-0		500 mi
	Test Name ASTM-IP Method Range Amount/test	
	Softening point	
	Needle penetration	
Mechanical	properties	
ERM-FA013	Charpy specimens 30 J (bars)	set (5)
	A unit consists of five Charpy V-notch test pieces, which are rectangular steel bars of nominal dimensions 55 mm	
	x 10 mm x 10 mm, with one V-notch, accurately machined to tolerances imposed in EN 10045-1 and ISO 148.	
	Absorbed energy (KV) at 20 \pm 2 °C30J nominal	
ERM-FA014	Charpy specimens 60 J (bars)	set (5)
	A unit consists of five Charpy V-notch test pieces, which are rectangular steel bars of nominal dimensions 55 mm	001 (0)
	x 10 mm x 10 mm, with one V-notch, accurately machined to tolerances imposed in EN 10045-1 and ISO 148.	
	Absorbed energy (KV) at 20 ± 2 °C60J nominal	
ERM-FA015	Charpy specimens 80 J (bars)	set (5)
	A unit consists of five Charpy V-notch test pieces, which are rectangular steel bars of nominal dimensions 55 mm	
	x 10 mm x 10 mm, with one V-notch, accurately machined to tolerances imposed in EN 10045-1 and ISO 148.	
	Absorbed energy (KV) at 20 ± 2 °C80J nominal	
ERM-FA016	Charpy specimens 120 J (bars)	set (5)
	A unit consists of five Charpy V-notch test pieces, which are rectangular steel bars of nominal dimensions 55 mm	
	x 10 mm x 10 mm, with one V-notch, accurately machined to tolerances imposed in EN 10045-1 and ISO 148.	
	Absorbed energy (KV) at 20 ± 2 °C120J nominal	
ERM-FA415	Charpy specimens 160 J	set (5)
	A unit consists of five Charpy V-notch test pieces, which are rectangular steel bars of nominal dimensions 55 mm	(-)
	x 10 mm x 10 mm, with one V-notch, accurately machined to tolerances imposed in EN 10045-1 and ISO 148.	
	Absorbed energy (KV) at 20 \pm 2 °C160J nominal	
NIST-2092	Low Energy Charpy (10, 20, I)	cot
11131-2092	Low-Energy Charpy (10 -20 J)	set
	NIST-2092 is intended primarily for the verification of Charpy V-Notch machines in accordance with the current ASTM Standard E23.	
NIST-2096	High Energy Charpy (88 - 136J)	set
	NIST-2096 is intended primarily for the verification of Charpy V-Notch machines in accordance with the current ASTM Standard E23.	
NIST-2098	Super High-Energy Charpy (176 - 244J)	set
	NIST-2098 is intended primarily for the verification of Charpy V-Notch machines in accordance with the current	
	ASTM Standard E23.	
BCR-425	Nimonic 75 - Creep rate	set (3)
	150 mm long 14 mm diameter bars of Nimonic 75.	
	Testing conditions: T = 600 °C, σ = 160 Mpa	
	Certified values	
	Creep rate at 400 h	
	time to 2 % strain	
BCR-661A	Nimonic 75 for ambient air tensile properties	set (3)
	The material is Nimonic 75 nickel base alloy. It will be issued in units of three bars each about	
	150 mm long x 14 mm diameter, sufficient for the manufacture of three test-pieces.	
	Certified values for tensile properties according to EN10002-1	
	0.2% Proof stress $R_{p0.2}$	
	0.5% Proof stress R _{p0.5}	

Code	Product	Unit
BCR-661B	Nimonic 75 for ambient air tensile properties	rod
	The material is Nimonic 75 nickel base alloy. It will be issued as one bar with about 500 mm long x 14 mm diameter.	
	Certified values for tensile properties according to EN10002-1	
	$ 0.2\% \mbox{ Proof stress } R_{p0.2} 300 \pm 7 \mbox{ MPa} \\ 0.5\% \mbox{ Proof stress } R_{p0.5} 318 \pm 7 \mbox{ MPa} \\ Tensile strength } R_m 370 \pm 13 \mbox{ MPa} $	
BCR-692	Scratch test reference material	coupons
	A reference material certified for critical loads for cohesive/adhesive failures during scratch testing (prEN 1071-3) The reference samples are (30x30x5) mm steel coupons coated with a diamond-like carbon coating (DLC)applie by plasma-assisted chemical vapour deposition. The coupons are distributed in a reusable plastic box containing desiccant.	d
NIST-2100	Fracture Toughness of Ceramics	5 bars
	NIST-2100 is intended for verification of fracture toughness testing procedures and consists of a set of five hot- pressed silicon nitride flexure specimens cut from a single billet (plate) of material. This SRM may be used with any fracture toughness test method, but is optimized for beam bending testing configurations. The SRM may be used in conjunction with American Society of Testing and Materials (ASTM) fracture toughness standard C1421-99 (or the Provisional Standard PS070-97 which preceded it) [1]. This SRM may also be used with two International Organization for Standardization (ISO) standard tests under development by ISO Technical Committee TC 206, Fine Ceramics.	

Physico-chemical properties

Magnetic moment

NIST-762	Magnetic moment standard - Nickel disk	6 mm dia.
	This Standard Reference Material [®] (SRM [®]) is intended for use in the calibration of magnetometers (such as vibrating sample magnetometers) used in the measurement of the magnetic properties of materials. NIST-762 consists of a nickel disk nominally 6 mm in diameter with a thickness of 0.127 mm and a mass of 32 mg ± 1 mg. The NIST-762 lot was produced from rolled nickel sheet with a purity of 99.999 %. Disks were punched from the sheet. Before measurement, the disks were ultrasonically cleaned in acetone, then methyl alcohol.	
	The certified value for specific magnetization, σ at 298 K and in an applied magnetic field of 398 kA/m (5000 oersted, Oe) with the magnetic field aligned parallel to the plane of the disk is:	
	σ = 54.78 A m ² /kg ± 0.15 A m ² /kg (54.78 emu/g ± 0.15 emu/g)	
NIST-764A	Magnetic susceptibility standard - Platinum cylinder	3 mm dia.
	This Standard Reference Material (SRM [®]) is intended for use in the calibration of magnetometers (such as vibrating sample magnetometers) used in the measurement of the magnetic properties of materials. NIST-764a consists of	
	a platinum (Pt) cylinder with a nominal diameter of 3 mm, a nominal length of 3.42 mm, and a nominal mass of 620 mg. NIST-764a lot was produced by slicing a pure (99.99 %) platinum rod into 3.42 mm long pieces.	
NIST-2853	Magnetic moment standard yttrium iron garnet sphere	each
	This Standard Reference Material (SRM [®]) is intended for use in calibrating of magnetometers (such as vibrating sample magnetometers) used in the measurement of the magnetic propterties of materials. NIST-2883 consists of a yttrium iron garnet (YIG) sphere with a nominal diameter of 1 mm and a nominal mass of 2.8 mg.	
NIST-772A	Nickel sphere for magnetic moment	each
	This Standard Reference Material (SRM) is intended for use in the calibration of magnetometers (such as vibrating sample magnetometers) used in the measurement of the magnetic properties of materials. SRM 772a consists of	
	a nickel sphere 2.383 mm in diameter with a mass of 63.16 mg. The SRM 772a lot was produced from annealed nickel wire with a purity of 99.999 %. The wire was ground into spheres. The spheres were then ultrasonically cleaned in acetone and methyl alcohol and annealed at 1220 K in a dry hydrogen atmosphere for 2 h. The microstructure is equiaxed with an average grain size of about 100 µm.	
	The certified value for magnetic moment, m, at 298 K and in an applied field of 398 kA/m (5000 Oe) is	
	$m = 3.47 \text{ mA} \cdot \text{m}^2 \pm 0.01 \text{ mA} \cdot \text{m}^2$ (3.47 emu $\pm 0.01 \text{ emu}$)	
Miscellaneo	us	
NIST-953	Cobalt in aluminium - Neutron density monitor wire	1 m
	The standard is provided as a reference source of cobalt in aluminium alloy to serve as a neutron density monitor wire standard.	
NIST-963A	Fission track glass	set (6)
	This Standard Reference Material (SRM [®]) was produced and certified for use in uranium fission track analysis and monitoring neutron fluences. The SRM is made up of: four unirradiated glass wafers, two irradiated glass wafers, a muscovite mica and polycarbonate detectors.	
NIST-1002D	Hard Board - Surface flammability	set (4)
	This Standard Reference Material (SRM [®]) is intended for use in checking the operation of radiant-panel equipment in accordance with the calibration and standardisation technique describes in ASTM Standard E162-78 Test for Surface Flammibility using a Radiant Heat Source.	(')

Code	Product	Unit
NIST-1082	Cigarette ignition strength standard	10 packs
	This Standard Reference Material (SRM [®]) is intended for use by test laboratories to assess and control their testing of cigarette ignition strength in accordance with ASTM Standard Methods E 2187-04 (or ASTM E2187-02b). The SRM unit consists of one carton of cigarettes containing 10 packs of 20 cigarettes each.	
	Certified value	
	Measurand ASTM Method Certified Value and Expanded Uncertainty	
	Ignition Strength E 2187-04(a) 12.6 % ± 3.3 % (on 10 layers of filter paper)	
NIST-1006D	Smoke density chamber standard for non-flaming exposure condition	9 sheets
	This Standard Reference Material consists of paper sheets, principally -cellulose, derived from wood chips. The SRM is intended primarily for checking the operation of smoke density chambers under non-flaming exposure conditions in accordance with the prescribed calibration and standardization techniques outlined in the American Society for Testing and Materials (ASTM) Standard Test Method E 662-95 "Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials", and in National Fire Protection Association (NFPA) 258-1998, "Standard Research Test Method for Determining Smoke Generation of Solid Materials". A unit consists of nine single layer sheets, each 172 mm x 254 mm x 1.65 mm thick.	
	The certified value and expanded uncertainty [3] for maximum specific optical density of a single layer thickness is:	
	$Dm = 210 \pm 18$ (without correction for window deposit) $Dm \text{ corr.} = 193 \pm 20$	
NIST-1810A	Linerboard - Tape adhesion testing (sheet form)	50 each
	This Standard Reference Material (SRM [®]) is intended to provide a uniform source of linerboard for use with ASTM D 2860 Standard Test Method for Adhesion of pressure-sensitive tape to fiberboard at 90 degree angle and constant stress. Each unit consists fo fifty 21.6 cm x 28 cm (8.5 in x 11 in) linerboard sheets of Mosinee 696-C paper, sealed in a moisture resistent foil-lined package.	
NIST-2490	Non-Newtonian Polymer Solution for Rheology - Polyisobutylene Dissolved in 2,6,10,14- Tetramethylpentadecane Please ask for details	100 mL
NIST-2810	Rockwell C Scale Hardness (High Range)	each
	This Standard Reference Material (SRM [®]) is a transfer standard intended primarily for use in calibration and verification of the performance of Rockwell hardness equipment using the Rockwell C Hardness Scale (HRC).	
NIST-2811	Rockwell C Scale Hardness (High Range)	each
	This Standard Reference Material (SRM [®]) is a transfer standard intended primarily for use in calibration and verification of the performance of Rockwell hardness equipment using the Rockwell C Hardness Scale (HRC).	
NIST-2812	Rockwell C Scale Hardness (High Range)	each
	This Standard Reference Material (SRM [®]) is a transfer standard intended primarily for use in calibration and verification of the performance of Rockwell hardness equipment using the Rockwell C Hardness Scale (HRC).	
NIST-RM 8130	Coplanar waveguide calibration set	each
	This Reference Material (RM) is intended for use by industrial laboratories that wish to implement the procedure described in Part 1 of the NIST/Industrial MMIC Consortium's "Proposed Procedures for Verifying Probe Station Integrity and On-wafer Measurement Accuracy" for the measurement of microwave probe station stability and for verifying the ability to repeat on-wafer microwave measurements performed at NIST.	
NIST-RM 8458	Artificial flaw for eddy current nondestructive evaluation	eacl
	This Research Material (RM), the Capobianco, Dube, Fizer (CDF) notch, provides a reproducibility flaw of a known size and geometry that closely resembles an actual fatigue crack. It is intended to produce a response suitable for calibrating an eddy current nondestructive evaluation (NDE) system.	

LGC Standards, Queens Road, Teddington, Middlesex TW11 0LY, UK www.lgcstandards.com

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any retrieval system, without the written permission of the copyright holder. © LGC Limited, 2007. All rights reserved.